当前位置: 首页 > 医学版 > 医学理论 > 临床医学 > 动脉粥样硬化与生物化学检验
编号:99007
第五节 胆固醇调节元件结合蛋白
http://www.100md.com 《动脉粥样硬化与生物化学检验》

第五节 胆固醇调节元件结合蛋白

胆固醇调节元件结合蛋白(SREBPs),是一类能与胆固醇调节元件1(SRE-1)发生特异性结合的“碱性螺旋-环-螺旋-亮氨酸拉链”(bHLH-ZZP)蛋白。在细胞内缺乏胆固醇的情况下,SREBPs通过和SRE-1的结合,激活SRE-1的基因,使其翻译增强,发挥生理功能。

一、胆固醇调节元件1的功能和定位

编码低密度脂蛋白受体(LDL-R)的基因5'侧翼区,具有一个长10个碱基对的胆固醇调节元件1(sterol regulatory element 1,SRE-1)。SRE-1是一个条件正性调节元件,仅在细胞内胆固醇缺乏的条件下,才被激活。在其他的胆固醇调节基因如羟甲基戊二酸单酰CoA合酶(HMGCoA synthase )基因的启动子中也含有SRE-1,而在羟甲基戊二酸单酰CoA还原酶(HMGCoA reductase )基因的启动子中含有类似于SRE-1的胆固醇调节元件(SRE)。SRE-1通过调节LDL-R基因、HMGCoA合酶基因的翻译,控制细胞对外源性胆固醇的摄取量和内源性胆固醇的合成速率,调节细胞内胆固醇含量。SRE-1在LDL-R基因5'侧翼区的定位见图7-9。

     图7-9  +1表示翻译起始位点,T/A表示TATA盒,空心箭头表示重复区,重复区1、重复区3可能和Sp1(一种正性翻译因子)结合。重复区2内含有SRE-1。

二、SREBPs的发现和命名

1989年,Tripathi B.Rajavashisth发现了一种能和SRE结合的锌脂蛋白。1993年,Michael R.Briggs等人,利用离子交换层析、凝胶过滤和DNA亲和层析的方法,从人类宫颈癌细胞(Hela细胞)核的提取物中分离出了这一组能与SRE-1结合的蛋白质,并将其命名为胆固醇调节元件结合蛋白(sterol regulatory element-binding proteins, SREBPs)。SREBPs在细胞胆固醇缺乏的情况下,通过和SRE-1的结合,激活LDLR基因、HMGCoA合酶基因的翻译。

三、SREBPs的结构和分类

SREBPs具有“碱性螺旋-环-螺旋-亮氨酸拉链”(basic helix-loop-helix-leucine zipper, bHLH-ZIP)结构,是bHLH-ZIP蛋白系列的一种。bHLH-ZIP蛋白包含一系列能特异性地和含E盒(E box, CANNTG)的DNA结合的蛋白质,例如:调节免疫球蛋白基因翻译的TFE3,致肿瘤蛋白Myc等。SREBPs虽是bHLH-ZIP蛋白中的一种,但又不同于其他的bHLH-ZIP蛋白。一方面,SREBPs分子量大,含1140个左右的氨基酸残基;另一方面,SREBPs不识别E盒(E box)而特定地识别SRE-1中直接重复的“CAC”序列。

迄今为止,发现有两种SREBPs。一种称SREBP-1,另一种称SREBP-2 。SREBP-1又由于其mRNA剪接方式的不同,以三种功能上完全相同,组成上略有不同的形式大量存在,这三种形式的蛋白分别称为SREBP-1a、SREBP-1b、SREBP-1c。其中,SREBP-1a是SREBP-1的主要存在形式,故本文以SREBP-1a为例来描述SREBP-1。SREBP-1a含1147个氨基酸残基。分子量为125kD。至今,还没有发现SREBP-2存在多种不同的剪接后蛋白。SREBP-2含1141个氨基酸残基,分子量为121kD,与SREBP-1a之间有47%的同源性,含高度保守的bHLH-ZIP区,和SREBP-1a的bHLH-ZIP区有71%的一致性。但是SREBP-2含有不同SREBP-1a的谷氨酸富集区(在121个氨基酸残基中含多于27%的谷氨酸残基。SREBP-1a和SREBP-2的氨基酸序列和功能域结构之间的比较参见图7-10(A、B、C)。

图7-10 A:SREBP-2和SREBP-1a氨基酸序列之间的比较

“--”表示二者的相同部分

图7-10 B:SREBP-2和SREBP-1a的bHLH区(粗横线所示)的比较

四、SREBPs的生理功能

两种SREBPs利用位于其氨基酸残基470~570之间的疏水序列,附着于内质网膜和核膜,在氨基端的470个氨基酸残基组成的肽链中,均含“碱性螺旋-环-螺旋-亮氨酸拉链”的核心结构,使蛋白质能形成均一二聚体,并能和SRE-1结合。两种蛋白质氨基端一侧的结构中,都有酸性区域,可能作为DNA翻译的增强子。当人或仓鼠细胞在缺乏胆固醇的环境中培养时,蛋白酶在亮氨酸拉链和膜间的附着区处裂解SREBPs,并从膜上释放出水溶性的氨基端的裂解片段,这一片段约含470个氨基酸残基,表现分子量为68kD。这一片段能够移行入胞核,结合于SRE-1,从而激活LDLR基因翻译和HMGCoA合酶基因翻译。

SREBPs裂解、移行入胞核,进而结合于SRE-1,以致激活LDLR基因、HMGCoA合酶基因,都有赖于细胞内缺乏胆固醇。因为胆固醇能够抑制SREBPs的裂解。而已形成的SREBPs的裂解片段又很容易被迅速分解,从细胞核中快速消失。故而胆固醇的存在,将阻断整个调节通路,使SRE-1失活。

将SREBP-1和SREBP-2进行cDNAg隆,并采用质粒转染动物细胞的方法,使培养细胞,如Hela细胞和中国仓鼠卵巢细胞(CHO细胞),表达SREBP-1和SREBP-2,发现他们调节细胞内胆固醇代谢的过程是一致的,功能上是协同的,然而两种蛋白质是单独发生作用,没有发现杂化二聚体。为什么存在这两种组成不同但功能一致的SREBPs,原因还不清楚。

研究仓鼠肝脏中产生的,由细胞内胆固醇含量调节的mRNA(包括LDLR和HMGCoA合酶的mRNA)的含量。肝脏经HMGCoA还原酶抑制物mevinolin处理后,这两种mRNA的量都增加。通过阻止胆固醇的合成,mevinolin诱导暂时的胆固醇水平降低,而增强胆固醇调节基因的翻译。当mevinolin和胆汁酸结合树酯,如降胆灵合用时,mevinolin增强翻译的效果更强。降胆宁通过阻止肠道对胆汁酸的再吸收,使胆固醇转变为胆汁酸,因而增加肝脏对胆固醇的进一步需求。

最近,研究HMGCoA还原酶抑制物和胆汁酸结合树酯是否促进SREBP-1和SREBP-2在仓鼠肝脏中的蛋白裂解,与在培养的细胞中的发现有些不同。资料表明SREBP-1和SREBP-2的裂解片段在仓鼠肝脏中的调节作用是不一致的。仓鼠肝脏经mevinolin 加降胆宁处理后,SREBP-2的裂解片段增多,而SREBP-1的裂解片段减少。这一结果似乎表明在仓鼠肝脏中,SREBP-1对LDLR和HMGCoA合酶基因的基础翻译起作用,而SREBP-2对经胆汁酸结合树酯和胆固醇还原酶抑制物处理后,形成的胆固醇缺乏状态的基因翻译起作用。

另有报道,胰岛素和类胰岛素生长因子Ⅰ也可以通过SREBP-1介导LDL-R启动子的激活,从而调节细胞内的胆固醇含量。

总之,在细胞内胆固醇含量的自我平衡中,SREBPs起了重要作用,其详细机制的阐明,必然对胆固醇代谢调节的研究产生重大影响。

(董学梅 滕思勇 郑 芳 崔天盆)

参 考 文 献

1.Drayna D,Jarnagin A,Mclean J,et al Colnning and sequencing of human cholesteryl ester transfer protein cDna,Narure,1987,327:632-634

2.Abbey M.Savage J,Mackimnnon A,et al .Detection of lipidtransfer protein activity in rabbit perfusate.Biochim BiophysActa,1984,793:481-484

3.Nishida H,Katolt,Nishida T.Affinty of lipid transferprotein for lipid and lipoprotein particles as infuenced by lecithinecholesteryl acyltransferase.J Biol Chem,1990,265:4876-4883

4.Tall A.Plasma lipid transfer proteins .Jlipid Res,1986<27:361-367

5.Hussain M,Maxfield F,Mas Olira J,et al .Clearance ofchylomicron remnants by the low denisty lipoprotein receptor-related.J BiolChem,1991,266:13936-13940

6.Scottrup Jenesen L Alpha-Macroglobulins:structure,shape andmechansim of proteinase complesx formation. J Biol Chem,1989,264:11536-11542

7.Strickland D,Ashcom J,Williams S,et al Sequence identity between the α2-Macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor ,J Biol Chem,1990,265:17401-17404

8.Brown M,Goldstein J,et al .A receptor mediated pathway forcholesterol homeostasis .Science,1986,232:34-47.

9.Smith J R,Oshrne T F,Goldstein J L,et al Identification ofnucleotides responsible for enhancer activity of sterol regulatory element inLDLR gene.J Biol Chem,1990,265:2306-2310

10.Briggs M R,Yokoyama C,Wang X,et al .Nuclear protein thatbinds sterol regulatory element of low density lipoprotein receptor promotor.JBiol Chem,1990,265:14490-14496

11. Youkoyama C,Wang X,Bringgs M R,et al ,srebp-1,abasic-helix-loop-helix-leucine zipper proteins that controls transcription ofthe low density lipoprotein receptor gene Cell,1993,75:187-197

12.Goldstein JL ,Brown M S.Regulation of the mevalonatepathway .Natute,1990,343:425-430

13.Rajavashioth T B,Taylor A.K,Andalibi A,et al.Identification of a zinc finger protein that binds to the sterol regulatoryelement .Science,1989,245:640-643

14.Wang X,Briggs M R,Hus X,et al. Nuclear protein that bindssterol regulatory element of low density lipoprotein receptor promoter.J.Biol.Chem,1993,268:14497-14504

15. Kadesch T,Consequences of heteromeric interactions amonghelix-loop-helix protein.Cell Growth Differ.1993,4:49-55

16.Beckman H,Sul K,kadesch T.TFE3:a helix-loop-helix protein that activated transcription through the immunoglobulin enhancer motif .Gene.KEV.1990,4:167-179

17.Hua X,Yokoyama C,WuJ,et al.SREBP-2,a secondbasic-helix-loop-helix-leucine zipper protein that stimulates transcription bybinding to a sterol regulatory element Proc Natl Acad SciUSA,1993,90:11603-11607

18.Sato R,Yang J,Wang X,et al.Assignment of the membraneattachment ,DNA bindings ,and transcriptional activation domains of sterolregulatory element-binding protein-1(SREBP-1).J Biol Chem,1994,269:17267-17273

19.Wang X,Sato R,Brown M S,et al SREBP-1,a membrane-boundtranscription factor released by sterol-regulated proteolysis,Cell,1994,77:53-62

20.Ma PTS,Gil G,Sudhof T C,et al .Mevinolin,an inhibitor ofcholesterol sythesis induces Mrna for LDLDR in livers of hasmters and rabbits .ProcNatl Acad Sci USA,1986,83:8370-8374

21.Mehrabian M,Callaway K A,Clarke C F,et al Regulation ofrat liver 3-hydroxy-3-methsutaryl coenzyme A synthase and the chromosomollocalization of the humen gene J Biol Chem,1986,261:16249-16255

22.Brown M S,Goldstein J L.A receptor mediated pathway forcholesterol homeostasis .Science,1986,232:34-47

23.Sherg Z,Otani H,Brown M S,et al.Independent regulation ofsterol regulatory element-binding protein 1 and 2 in hasmster liver.Prot NatlAcad Sci USA,1995,92:935-938

24.Streicher R,Kotzka J,Muller-Wieland D,et al.SREBP-1mediates activation of the low density lipoprotein receptor promoter byinsulin and insulin-like growth factor-I.J Biol Chem;1996,7128-7133

25.Wetterau J R,Zilversmit D B.Atriglyceride and cholesterylester transfer protein associated with liver microsomes .J,BiolChem,1984,259(17):10863-10886

26.Wetterau J R,Aggerbect,L P,Laplud M L ,et al .Structuralproperties of the microsomal triglyceride transfer rpoteincomplex.Biochemistry.1991,30(18):4406-4412

27.Wetterau J R,Combs K A.Snipnner S N,et al .Proteindisulfide isomerase is a component of the microsomal triglyceride transferprotein complex.J Biol Chem,1990,265(17):9800-9807

28.Goldberger R F,Epstein C J,Acceleration of reactivation ofreduced bovine pancreatic ribonuclease by a microsomal system from rat Liver JBiol Chem,1963,238:628-635

29.Sharp D,Ricci B Kicnzle B Kienzle B,et al Human microsomaltriglyceride transfer protein large subunit gene structure, Biodomistry,1994,33(31):9057-9061

30.Sharp D,Blindeman L.Combs K A et al .Cloning and genedefects in microsomal triglyceride transfer protein associated wiythabetalipoproteinaemia Nature ,1993,258:999-1001

31.Mathur S N,Born E,Marygy S,et al .Microsomal triglyceridetransfer protein in CaCo-2 Cell:characterization and regulation .J LipidRes,1997,38(1);61-67

32. Weterau J R,Aggerbert LP.Bouma ME ,et al Absence ofmicrosomal triglycetride transfer protein in individuals withabetalipoproteinaemia Science,1992,258:999-1001

33.Wetterau J R,Combs K A,Mclean LR ,et al .Protein disulfideisomnerase appears necessary to maintain the catalytically active structure ofthe microsomal triglyceride transfer protein .Biochemistry,1991,30(40):9728-9735

34.Ricci B,Shrp D.Rourke E,et al .A30-amino acid truncationof the microsomal triglyceride transfer proteinlarge subunit disrupts itsinteraction with protein disulfide-isomerase and causesabetalipoproteinaemia.J,Biol.Chem,1995,270(24):14281-14285

35.Wetterau J R,Lin M,Jamil H.Microsomal triglyceridetransfer protein Biochim Biophy Acta ,1997,1345(1);136-150

36.Boren J,Rustaeus S,Olofsson S.O.Studies on the assembly ofapolipprotein B-48 containing verylow density lipoproteins in MCARH7777 cells,JBiol Chem,1994,(269(41)25879-25888

37.Atael A.Wetterau J R.Mechansim of microsomcl triglyceridetransfer protein catalyzed lipid transport.Biochemistry,1993 ,32(39);10444-10450

38.Sniderman A,et al .Alseuce of microsomal triglyceridetransfer protein in indeviduals with abetalipoproteinemia.

39.Shrp D,Blinderma L,Combs K,et al.Cloning and gene defectsin microsomal triglyeride transfer protein associated with abetalipoproteinemiaNature ,1993,365:65

40.Sniderman A S,Marpole D M,Sdinner B,Kwiviterovich ,et al.The saaociaton of coronary atherosclerosis cholesterol content in human plasmalow density lipoprotein .Prot Nat Acad Sci USA,1990,97:604-608

41.Sniderman A S,Marpole D M.Skinner B,Kwivterovich ,etal.The association of coronary atherosclerosis cholesterol content in humanplasma low density lipoprtein .Prot Natl Acad Sci USR ,1990,97:604-608

42.Teng B,Thompson GR,Smiderman AD,et al.Composition anddistrbution of low density lipoprotein fracteons in hyperapobetalipoproteinemia,normolipidemia and familial hypercholesteroemia Prot Natl Acad Sci USA,1983,80:6662-6666

43.Kwiterovich Po Jr,white S,Forte T,etal.Hyperapobetalipoproteinemia in a kinderd with familial combinedhyperlipidemica and familial hypercholeserolemia .ArterosclerThromb,1987,7:211-225

44.Kwiterovich Po Jr,Coresh J Bachorik PL Prevalence of hyperapobetalipopproteinemia and other lipoprotein phenotypes in men(≤50years )and women(≤60years)with coronary disease Am J Cardiol,1993,71:631-639

45.Brunzdll JD.Sniderman AD,Albers JJ,et al.Apolipoprotein Band coronary artery disease in humans.Arterioscler Thromb,1984,4:79-83

46.Kwiterovich po Jr.HyperAopB:a pleiotrothic phenotypecharacterized by dense low density liporoteins and associated with coronaryartery disease.Clin Chem,1988:34(supple B-1-B-135)B71-B83

47.Cianflone K,Kwiterovich po Jr,Wslsh M,et al.Stimulation offatty acid uptake and triglyceride synthesis in human cultured sdin fibroblastsand adipocytes by a serum protein.Biohys Res commun,1987,144:94-100

48.Cianflone KM,Rodriguez MA,Welsh MJ,et al.Effect ofacylation-stimulation protein on triglyceride synthesis in cultured skinfibroblasts from normals and patients with hyperapobetalipoproteinemia(Abstract)Arteriosclerosis,1987,7:496

49.Cianflone KM,Rodriguez MA,Walsh M,et al.Purification andcharacterization of caylation-stmulating protein,J Biol Chem,1987,7:496

50.Kwiterovich Po Jr,Motevlli M,Miller M Acylationstimulating activity in hyperapobetalipoproteinemia fibrolasts enhancedcholesterol esterification with another serum basic protein BPⅡ.Proc Natl AcadSci USA,1990,87:8980-8994

51.Vahouny GV,chanderbhan R,kharroabi A.Sterol carrier andlipid transfer protein (Revicw).Adv Lipid Res,1987,22:83-113

52.Kwiterovich PO,Jr,Motevalli M,Miller M.The effect of threeserum basic proteins on the mass of lipids in normal and hyperAopB fibroblastsArterioscler Thromb,1994,14:1-7

53.Teng BA,Forse MA,Rodriguez AD,et al.Adipose tissueglyceride synthesis in patients eith hyper aplbetalipoprotenemia J PhysiolPharmacol,1988,66:239-242

54.Cianflone KM,Maslowska MH.Sniderman AD.Impaired responseof fibroblasts from patients with hyperapobeta lipoproteinemia to acylation-stimulatingprotein.Jclin Invest.,1990,85:722-30

55.Babirak SP.Iverius PH,Fujimoto WY.Detection andcharacterization of the heteroazygous state for lipoprtein lipase deficiency ,Arteriosclenosis.1989,9:326-34

56.Kwiterovich PO.Jr,Motevalli M,Miller M,The effect of threeserum basic proteins on the mass of lipid in normal and hyperapoB fibroblasts .ArteriosclerThromb,1994,141-7

57. Baldo AD.Sniderman S Kohen MK,Cianflone signaltransduction pathway of acylation stimulating protein involvement of proteinkinase C.J lipid Res 1995,36:1415-1426

58.Kwiterovich PO Jr ,Motevalli Miller M,Inhibition ofprotein tyrosine dinase alters the effcet of serum basic protein I ontracylglycerol and cholesterol differently in normal and hyperapoB fibroblastsArteriolcler Thromb Vasc Biol,1995,15:1195-1203

59.Castagna MY,Takai KK,et al .Direct activation of calciumactivated phospholipid dependent protein dinase by tumor promoting phorbolesters J Biol Chem,1982,257:7847-7851

60.Witters L A,and PJ,Blackshear,Protein kinase C mediatedphosphorylation in intact cells Methods Enzymol1987,141:412-425

61.Etscheid BG,Albert KA,Villereal ML,et al.Transduction ofthe bradykinin response in human fibroblasts prolonged elevation ofdiacyglycerol level and its correlation cell.Reg .1991,3:229-239

62.Zor VE,Her T,Harell G.et al.Arachidonic acid release bybasophilic leudemia cells and macrophages stimulated by Ca2+ ionophores,antigen and diacylglycerol:essential role for protein dinase C and prevention byglucocorticosteroids.Biochem Biophys Acta.1990,1091:385-392

63.Ishizuda TJ,Hoffman DR,Cooper JE,et al.Clucose inducedsynthesis of ciacylglycerol de novo is associated with translocation cactivationof protein kinase C in rat adipocytes FEBS Lett.1989,249:234-238

64.Sato R.Goldstein JL,Browm MS,Replacement of serine871 ofhamster 3-hydroxy-3methylglutaryl coA reductase prevents phosphorylation by aAMP-activated kinase and blocks inhibition of sterol synthesis indrced by ATPdepletion Proc Natl Acad Sci USA,1993,90:9261-9265

65.Bolen JB,Non erceptor tyrosine protein kinasesOncogene.1993,8:2025-2031

66.Park DJ.Nin HK,Rhee SG,IgE-in duced tyrosinephosphorylation of phospholipase Cr-1 in rat basophilic leukemia cells J.BiolChem,1991,266:24237-24240

67.Cianflone K,AD Sniderman M.J.Walsh.H.et al.Purificationand characterization of acylation stimulating protein .J.BiolChem,1989,264:426-430

68.Germinario R,A Sniderman D Manuels S.et al .Coordinateresponse of triacylglycerol synthesis and glucose transport by acylationstimulating protein ,Metab Clin Exp.1993,42:574-580

69.Yasruel Z,Cianflinge K,Sniderman AD,et al.Effect ofcaylation stimulating protein on the triacylglycerol synthetic pathway of humanadipose tissue .Lipids .1991,26:495-499

70.Mayorek No,I Grinstein and J.Bar Tana.Triacylglycerol.synthesis in cultured rat hepatocytes EurJ Biochem,1989,182:395-400

71.Teng B.Sniderman AD.Soutar AK,et al. Metabolic basis ofhyperapobetalipoproteinemia J Clin Invest .1986,77:663-672

72.Cook KS,Min D,Fnhnson et al.Adipsin:a circulating serineprotease homolog secreted by adipose tissue and sciatic nerve.Science(Wash.DC).1987,237:402-405

73.White RT.Damon .N,Hancodk ,et al.Human adipoin isidentical to complement factor D and is expressed at high levels in adiposetissue.J Biol Chem,1992,267:9210-9213

74.Choy LN,Rosen BS.B.M Spiegelman.Adipsln and an endogenouspathway of complement from adipose cells,J Biol Chem,1992,267:12736-12741

75.Cianflone KA,Snielerman D.Walsh MJ,et al .Adipsin/Acylatinstimulating protein system in human adipocytes :regulation of triacylglycerolsynthesis.Bioxhemistry.1994,33:9489-9495

76.Spiegelman BM,Fraik M,Green,H,Molecular cloning of mRNAfrom 3T3 adipocytes J Biol Chem,258,16:10083-10089

77.Cook KS,Groves ,DL,Min HY,et al.A devlopmently regulatedmRNA from 3T3 adipo cytes cncodes A novel serine protease homologue .Proc NatlAcad Sci USA.1985,82:6480-6484

78.Sniderman A.Shapiros ,Marpole D,et al. Association ofcoronary atheroscleros is with Ah perapo beta lipoprotenemia .Proc Natl Acad SciUSA,1980,97:604-608

79.Sniderman A.Wolfson V,Teng B.Association ofhyperaobetalipwproteinemia with endogenous hypertrglyceridemia andatherosclerosis Bachorikp Ann Intern Med .1982,97:833-839

80.Teng B Thompson GR Sniderman AD,Composition anddistrbution of low ednsity lipoprotein fractions in hyperapobetalipoproteinemianormolpidemia ,and familial hypercholesterolemia .Proc Natl Acad Sci USA1983,80:6662-6666

81. Flier JS,Cook KS,Vsher P,et al.Severely Iimpaired adipsinexpression in genetic and acquired obesity ,Science .1987,244:1483-1487

82.Rosen BS,Cook KS,Yaglom Jet al .Adipsin and Comlementfactor D activity:an immune-pelated defect in obesity .Science,1989,244:1483-1487

83.Dovis RA,Boogaerts JR.Intranepatic assembly of very lowdensity lipoproteins J Biol chem,1982,257:10908-10913

84.Hugli TE.Biochemistry and biology of anaphylatoxin currtopics microbiol immunol ,1989,153:181-208

85.Praz F.Rauth EJ.Growth-supporting activity of fragment baof the human alternative complement pathway for activated murine B lymphocytes.J Exp Med 1986,163,1349-1354

86.Ambrus JL,Jr Peters MG,Fauci AS,et al.The ba fragment ofxomplement factor B Inhibits human Blymphocyte proliferation J Immunol.1990,144:1549-1533

87.Campeau L Enjabert M.lesperange J et al .The pelation ofrisk factors to the development of atheroscerosis in saphenous-vein bypasscorafts and the progression of disease in the native circulation N Engl J Med.1984,311:1329-1332

88.Brown BO,Alberts JJ,Fisher LD,et al.Regression of coronaryartery disease as a result of intensive lipid-lowering therapy in men with highlevels of apolipoprotein B.N Engl J Med,1990,319:1289-1298

89.Kwiterovich PO,Ir.whitxy ,Forte Tetal.Hyperapobetalipoproteinemia in a dindred with familial combinedhyperlipidemia and rfmilial hypercholesterolemia Artriosclerosis,1987,7:211-225

90.Sandkamp M,Funke H.Schulte H,K liporotein (a)Is AnIadependent risk tactor for myocardial in farction at Yong are ,ClinChem,1990,36:20-6

91.ladias JA,K witerovich PO,Ir,Smith H,et al.A missensemutation arinine 4019-tryptophan in apolipoprotein B in a famliy with hyperapoBand premature atherosclerosis .Arteriosclersis ,1987,7:492

92.Gavish D,Brinton EA,Breslow JL,Heritable allele –specisicdifferences in amounts of apoB,and low-density lipoproteins inplasma.Science.1989,244:72-76

93.Coresh J,Kwiterovich PO,Jr,Antoaradis SE,HyperapoB apleiotropic phenotype cheracterized by dende lowdendity lipoproteins andassociated with coronary diseade .Am J Hum Genet ,1990,47(3):A130

94.Teng B.Sniderman AD,Krauss RM,Modulation of apolipoproteinB antigenic determinants in human low density lipoprtein subclasses J Biolchem,1985,260;5067-5072

95.Knighy BL,Thompson GR,Soutar AK.Binding and degradation ofheavy and lighy subfractions of low density lipoprotein by cultured fibroblastsand macrophages Atherosclerosis.1986,59:301-306.

96.White R T, Damm D.Hanxock N.et al. Cell Biol.1991 inpress.

校对时间:1999-12-13 马海茸

, 百拇医药