当前位置: 首页 > 期刊 > 《中国美容医学》 > 2011年第3期 > 正文
编号:12080404
骨髓间充质干细胞膜片复合磷酸三钙陶瓷构建工程化骨组织的体内成骨研究(2)
http://www.100md.com 2011年3月1日 马东洋 马敬 姜东红 王剑锋
第1页

    参见附件(2466KB,3页)。

     1.2.2 细胞膜片显微结构观察:随机选取所获细胞膜片,4%多聚甲醛固定,梯度乙醇脱水,常规石蜡包埋,切成5μm厚切片,苏木精-伊红染色(H&E)光镜下观察组织结构。部分膜片样本经丙酮固定,钙钴法进行碱性磷酸酶染色。部分膜片经2.5% 戊二醛固定,梯度乙醇脱水,干燥,喷金,扫描电子显微镜观察标本表面形貌及层面结构。

    1.2.3 体内试验:实验组将单层细胞膜片剪切成10mm×25mm的长方形状(图1A),并由一端卷起包裹预制成的TCP圆柱体(直径0.8cm,高度1.0cm,70%孔隙率,平均孔径450± 50μm,图2A、B),静置孵育24h后移植到裸鼠背部皮下。作为对照,相同大小的细胞膜片和同规格经成骨培养基孵育24h的单纯材料也进行皮下移植。术后6周处死动物取材,进行大体观察及组织形态学分析:①组织学定性分析:各样本经石蜡包埋、切片后HE及Mallory 三色染色光镜观察;②组织学半定量分析:每组每例样本连续4张5μm厚切片,横贯整个样本,Mallory 三色染色后由独立的观察者采用NIH Image J图像分析系统在10倍镜下分析切片中骨样组织(砖红色)与纤维组织(淡蓝色)所占的面积百分比。每张切片随机选取4个视野,计量后收集各组数据,取其平均值。

    2结果

    2.1 膜片的构建:融合BMSCs经过2周连续培养,皿底有透明乳白色薄膜样物质形成,表面散在多个白色结节。用细胞刮沿皿底轻刮即可使其与培养皿底分离,刮起后膜片自行收缩,具有弹性和较稳定的机械性能,可以用镊子或血管钳进行钳夹操作。HE染色,所获膜片具有类似三维结构,由约8~10层细胞及细胞外基质组成,厚度平均158μm (图1B)。扫描电镜下观察:膜片中细胞被细胞外基质包埋,基质表面可见矿化结节聚集(图2C)。

    2.2 体内实验

    2.2.1 移植6周后:实验组和TCP组取材标本的形状与移植前无明显变化,但前者表面较硬,容易与周围软组织分离,后者表面被覆一层质软的纤维组织,不易分离。膜片组见纸片状硬质组织形成。

    2.2.2 组织学结果:实验组的外周表现为矿化程度较高的板层状骨组织,可见致密骨基质、骨陷窝、骨细胞、成骨细胞等结构,材料内部的孔隙中央为纤维组织,周边见低度矿化的小梁骨(图3A、B、C)。组织定量学分析,骨与纤维组织的所占面积分别为22.5%和59.6%。单一TCP组孔隙内为纤维组织(面积比为76.1%),未见骨或软骨样组织。单纯膜片组见片状编织骨形成,致密的骨基质中可见类髓腔样结构(图3D)。

    3讨论

    本研究证实了BMSC膜片与多孔TCP支架材料复合构建组织工程骨的可行性。与传统方法相比,本研究应用的构建方法具有以下优点:①采用物理刮治的方法将体外扩增的细胞连同培养过程中自分泌的细胞外基质、形成的细胞基质连接一同收集,避免了传统用胰蛋白酶消化的有创收集方法;②具有较高的细胞利用率。

    细胞膜片技术由日科学家Okano等[6]发明,他们将温度敏感性聚合物凝胶涂层于普通培养皿底壁制备出了温敏性培养皿,在37℃时聚合物对其表面扩增融合的单层细胞膜片有绝对亲和性,但降至其临界溶液温度32℃以下时,此聚合物对单层细胞膜片的亲和性消失,使细胞膜片自动从培养皿底壁释放。该培养技术避免了对细胞进行传统胰蛋白酶消化等处理,进而保留了细胞自分泌的细胞外基质以及一些重要的细胞表面蛋白如离子通道、生长因子受体、细胞-细胞连接蛋白。利用此技术,角膜、皮肤、心肌、肝组织等多种细胞密集型软组织已被成功构建[3],但在用于骨组织方面的研究较少。2007年,Zhou等[4]首先报道用细胞膜片技术与复合离散细胞悬液的聚合物-陶瓷材料(磷酸三钙-聚已酸内酯复合物)构建出组织工程骨;Gao等[7]则用多层细胞膜片与管状珊瑚构建出管型骨。Okano等获取膜片的技术操作程序较复杂,而且应用温敏聚合物,可能会影响细胞的增殖分化。同时该技术获得的膜片为单层细胞组成,厚度只有约10μm[8]。相比之下,我们的细胞膜片获取方法简单易行,无需特殊材料或者设备,而且由多层细胞及细胞外基质组成,厚度可达158μm,更像三维结构的组织。另外,一定的厚度赋予了膜片相应的弹性和较稳定的机械性能,增加了可操作性。本研究则用单层膜片与已用于临床的人工骨替代材料TCP复合。

    有趣的是,实验组中,不仅在支架材料的外周有矿化程度较高的骨组织形成,而且在材料内部也可见相当数量的骨小梁。这一结果表明:作为细胞释放载体系统,细胞膜片可赋予无机材料以生物活性。另一个有趣的结果是,与单纯材料组相比,实验组材料孔隙结构内的纤维组织量较少,意味着细胞膜片在促进成骨的同时阻止了纤维组织的张入,有望成为新型的具有生物活性的组织引导再生膜。

    组织工程骨要取代自体骨移植大范围应用于临床,首先需要解决大体积支架内部细胞的氧气、营养供应以及代谢产物排泄。种子细胞在体外依赖于培养介质提供营养,而植入到体内后,如同非血管化的游离骨移植,则需依靠受区组织液的弥散渗透作用获得营养。然而,理论上体内环境通常所能提供的最大弥散距离是150~200μm,因此大体积复合物内相当数量的细胞因为无法获取营养物质并排泄代谢产物而死亡[9-10]。尽管已有诸多方法可促进组织工程植入物与宿主血管网的紧密联系,提高细胞成活率和组织修复功能,但目前为止,任何促进血管生长的方法都需要5~7天以上时间才能使植入细胞获得血液供应,在这段时间内,细胞需从组织液中获得足够营养[10]。本实验所应用的BMSC膜片厚度为 158μm左右,在有效组织弥散范围内。我们推测将其植入体内后易于成活,有利于提高细胞治疗的效率。

    [参考文献]

    [1]Meijer GJ,de Bruijn JD,Koole R,et al. Cell-based bone tissue engineering[J]. PLoS Med,2007,4(2):e9.

    [2]Quarto R,Mastrogiacomo M,Cancedda R,et al. Repair of large bone defects with the use of autologous bone marrow stromal cells[J].N Engl J Med,2001,344(5):385-386.

    [3]Yang J,Yamato M, Shimizu T, et al. Reconstruction of functional tissues with cell sheet engineering[J]. Biomaterials,2007,28(34):5033-5043.

    [4]Zhou Y,Chen F,Ho ST,et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts[J]. Biomaterials,2007,28(5):814-824 ......

您现在查看是摘要介绍页,详见PDF附件(2466KB,3页)