当前位置: 100md首页 > 医学版 > 医学资料 > doc资料 > 更多1 > 正文
编号:11809310
01细胞的基本功能.doc
http://www.100md.com
    参见附件(26kb)。

    细胞的基本功能

    考纲要求

    1.细胞膜的物质转运。

    2.细胞的生物电现象以及细胞兴奋的产生和传导的原理。

    3.神经-骨骼肌接头的兴奋传递。

    考纲精要

    一、细胞膜的基本结构--液态镶嵌模型

    该模型的基本内容:以液态脂质双分子层为基架,其中镶嵌着具有不同生理功能的蛋白质分子,并连有一些寡糖和多糖链。

    特点:

    (1)脂质膜不是静止的,而是动态的、流动的。

    (2)细胞膜两侧是不对称的,因为两侧膜蛋白存在差异,同时两侧的脂类分子也不完全相同。

    (3)细胞膜上相连的糖链主要发挥细胞间"识别"的作用。

    (4)膜蛋白有多种不同的功能,如发挥转动物质作用的载体蛋白、通道蛋白、离子泵等,这些膜蛋白主要以螺旋或球形蛋白质的形式存在,并且以多种不同形式镶嵌在脂质双分子层中,如靠近膜的内侧面、外侧面、贯穿整个脂质双层三种形式均有。

    (5)细胞膜糖类多数裸露在膜的外侧,可以作为它们所在细胞或它们所结合的蛋白质的特异性标志。

    二、细胞膜物质转运功能

    物质进出细胞必须通过细胞膜,细胞膜的特殊结构决定了不同物质通过细胞的难易。例如,细胞膜的基架是双层脂质分子,其间不存在大的空隙,因此,仅有能溶于脂类的小分子物质可以自由通过细胞膜,而细胞膜对物质团块的吞吐作用则是细胞膜具有流动性决定的。不溶于脂类的物质,进出细胞必须依赖细胞膜上特殊膜蛋白的帮助。

    物质通过细胞膜的转运有以下几种形式:

    (一)被动转运:包括单纯扩散和易化扩散两种形式。

    1.是指小分子脂溶性物质由高浓度的一侧通过细胞膜向低浓度的一侧转运的过程。跨膜扩散的最取决于膜两侧的物质浓度梯度和膜对该物质的通透性。单纯扩散在物质转运的当时是不耗能的,其能量来自高浓度本身包含的势能。

    2.易化扩散:指非脂溶性小分子物质在特殊膜蛋白的协助下,由高浓度的一侧通过细胞膜向低浓度的一侧移动的过程。参与易化扩散的膜蛋白有载体蛋白质和通道蛋白质。

    以载体为中介的易化扩散特点如下:(1)竞争性抑制;(2)饱和现象;(3)结构特异性。以通道为中介的易化扩散特点如下:(1)相对特异性;(2)无饱和现象;(3)通道有"开放"和"关闭"两种不同的机能状态。

    (二)主动转运,包括原发性主动转运和继发性主动转运。

    主动转运是指细胞消耗能量将物质由膜的低浓度一侧向高浓度的一侧转运的过程。主动转运的特点是:(1)在物质转运过程中,细胞要消耗能量;(2)物质转运是逆电-化学梯度进行;(3)转运的为小分子物质;(4)原发性主动转运主要是通过离子泵转运离子,继发性主动转运是指依赖离子泵转运而储备的势能从而完成其他物质的逆浓度的跨膜转运。

    最常见的离子泵转运为细胞膜上的钠泵(Na+ -K+泵),其生理作用和特点如下:

    (1)钠泵是由一个催化亚单位和一个调节亚单位构成的细胞膜内在蛋白,催化亚单位有与Na+、ATP结合点,具有ATP酶的活性。

    (2)其作用是逆浓度差将细胞内的Na+移出膜外,同时将细胞外的K+移入膜内。

    (3)与静息电位的维持有关。

    (4)建立离子势能贮备:分解的一个ATP将3个Na+移出膜外,同时将2个K+移入膜内,这样建立起离子势能贮备,参与多种生理功能和维持细胞电位稳定。

    (5)可使神经、肌肉组织具有兴奋性的离子基础。

    (三)出胞和入胞作用。(均为耗能过程)

    出胞是指某些大分子物质或物质团块由细胞排出的过程,主要见于细胞的分泌活动。入胞则指细胞外的某些物质团块进入细胞的过程。因特异性分子与细胞膜外的受体结合并在该处引起的入胞作用称为受体介导式入胞。

    记忆要点:(1)小分子脂溶性物质可以自由通过脂质双分子层,因此,可以在细胞两侧自由扩散,扩散的方向决定于两侧的浓度,它总是从浓度高一侧向浓度低一侧扩散,这种转运方式称单纯扩散。正常体液因子中仅有O2、CO2、NH3以这种方式跨膜转运,另外,某些小分子药物可以通过单纯扩散转运。

    (2)非脂溶性小分子物质从浓度高向浓度低处转运时不需消耗能量,属于被动转运,但转运依赖细胞膜上特殊结构的"帮助",因此,可以把易化扩散理解成"帮助扩散"。什么结构发挥"帮助"作用呢?--细胞膜蛋白,它既可以作为载体将物质从浓度高处"背"向浓度低处,也可以作为通道,它开放时允许物质通过,它关闭时不允许物质通过。体液中的离子物质是通过通道转运的,而一些有机小分子物质,例如葡萄糖、氨基酸等则依赖载体转运。至于载体与通道转运各有何特点,只需掌握载体转运的特异性较高,存在竞争性抑制现象。

    (3)非脂溶性小分子物质从浓度低向浓度高处转运时需要消耗能量,称为主动转运。体液中的一些离子,如Na+、K+、Ca2+、H+的主动转运依靠细胞膜上相应的离子泵完成。离子泵是一类特殊的膜蛋白,它有相应离子的结合位点,又具有ATP酶的活性,可分解ATP释放能量,并利用能量供自身转运离子,所以离子泵完成的转运称为原发性主动转运。体液中某些小分子有机物,如葡萄糖、氨基酸的主动转运属于继发性主动转运,它依赖离子泵转运相应离子后形成细胞内外的离子浓度差,这时离子从高浓度向低浓度一侧易化扩散的同时将有机小分子从低浓度一侧耦联到高浓度一侧。肠上皮细胞、肾小管上皮细胞吸收葡萄糖属于这种继发性主动转运。

    (4)出胞和入胞作用是大分子物质或物质团块出入细胞的方式。内分泌细胞分泌激素、神经细胞分泌递质属于出胞作用;上皮细胞、免疫细胞吞噬异物属于入胞作用。

    三、细胞膜的受体功能

    1.膜受体是镶嵌在细胞膜上的蛋白质,多为糖蛋白,也有脂蛋白或糖脂蛋白。不同受体的结构不完全相同。

    2.膜受体结合的特征:①特异性;②饱和性;③可逆性。

    四、细胞的生物电现象

    生物电的表现形式:

    静息电位--所有细胞在安静时均存在,不同的细胞其静息电位值不同。

    动作电位--可兴奋细胞受到阈或阈上刺激时产生。

    局部电位--所有细胞受到阈下刺激时产生。

    1.静息电位:细胞处于安静状态下(未受刺激时)膜内外的电位差。

    静息电位表现为膜个相对为正而膜内相对为负。

    (1)形成条件:

    ①安静时细胞膜两侧存在离子浓度差(离子不均匀分布)。

    ②安静时细胞膜主要对K+通透。也就是说,细胞未受刺激时,膜上离子通道中主要是K+通道开放,允许K+由细胞内流向细胞外,而不允许Na+、Ca2+由细胞外流入细胞内。

    (2)形成机制:K+外流的平衡电位即静息电位,静息电位形成过程不消耗能量。

    (3)特征:静息电位是K+外流形成的膜两侧稳定的电位差。

    只要细胞未受刺激、生理条件不变,这种电位差持续存在,而动作电位则是一种变化电位。细胞处于静息电位时,膜内电位较膜外电位为负,这种膜内为负,膜外为正的状态称为极化状态。而膜内负电位减少或增大,分别称为去极化和超级化。细胞先发生去极化,再向安静时的极化状态恢复称为复极化 ......

您现在查看是摘要介绍页,详见DOC附件(26kb)