当前位置: 首页 > 期刊 > 《世界华人消化杂志》 > 2000年第6期
编号:10696905
全反式维甲酸和5-Fu对裸鼠胃癌移植瘤生长和端粒酶活性的影响
http://www.100md.com 2000年6月15日 《世界华人消化杂志》 2000年第6期
     中山医科大学孙逸仙纪念医院消化内科 广东省广州市 510120

    夏忠胜,男,1971-10-08生,湖北省嘉鱼县人,汉族. 1994年湖北咸宁医学院临床医疗系毕业,1999年中山医科大学医学硕士毕业,住院医师,主要从事消化道疾病的研究.

    项目负责人
夏忠胜,510120, 广东省广州市,中山医科大学孙逸仙纪念医院消化内科.

    Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University of Medical Sciences, Guangzhou 510120, Guangdong Province, China

    Correspondence to
Zhong Sheng Xia, Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University of Medical Sciences, Guangzhou 510120, Guangdong Province, China
, 百拇医药
    Tel. 0086-20-81332489

    收稿日期 2000-01-10 接收日期 2000-03-02

    

    Effects of ATRA and 5-Fu on growth and telomerase activity of xenografts of gastric cancer in nude mice


    Zhong-Sheng Xia, Zhao-Hua Zhu and Shou-Gao He

    

    Abstract

, 百拇医药
    AIM To investigate the influence of ATRA and/or 5-Fu on growth and telomerase activity of xenografts of gastric cancer.

    METHODS Thirty-four female Balb/c nude mice were randomly divided into control group, solvent control group, ATRA group, 5-Fu group and AF group. The volumes of xenografts were measured at the 1st and the 11th day of experiment. The telomerase activity of xenografts was measured by telomere repeat amplification protocol (TRAP).
, 百拇医药
    RESULTS At the 11th day of experiment, the volumes of tumors in ATRA group (9.26mm3±0.84mm3) and AF group (5.86mm3±0.87mm3) were significantly smaller than those in solvent control group (13.41mm3±3.12mm3), the volumes of tumors in 5-Fu group (5.92mm3±1.25mm3) were significantly smaller than those in control group (13.19mm3±2.60mm3). Meanwhile, the telomerase activity of xenogrfts in ATRA group, 5-Fu group and AF group was 61% (versus solvent control group, P<0.01), 100% and 63% (versus solvent control group, P<0.01).
, 百拇医药
    CONCLUSION In vivo, both ATRA and 5-Fu inhibited the growth of subcutaneous xenografts of gastric cancer in nude mice. ATRA inhibited the telomerase activity of xenografts of gastric cancer, but 5-Fu did not. No synergistic inhibitory effect on the tumor growth and telomerase activity of xenografts of gastric cancer was found when ATRA combined with 5-Fu were given in vivo on the conditions of this study. The inhibition of telomerase activity of gastric cancer cells is one of the possible mechanisms by which ATRA inhibits tumor growth.
, 百拇医药
    Subject headings tretinoin; fluorouracil; stomach neoplasms; telomerase; transplantation; drug therapy; mice, nude

    Xia ZS, Zhu ZH, He SG. Effects of ATRA and 5-Fu on growth and telomerase activity of xenografts of gastric cancer in nude mice.

    Shijie Huaren Xiaohua Zazhi, 2000;8(6):674-677

    

    摘要

, 百拇医药
    目的 观察ATRA,5-Fu单独和联合应用对裸鼠胃癌移植瘤生长和端粒酶活性的影响.

    方法 34只裸鼠随机分成对照组、溶剂对照组、ATRA组、5-Fu组和AF组,分别于给药的d1,d11测量瘤体积,并采用TRAP法测定端粒酶活性.

    结果
用药后ATRA组(9.26±0.84)mm3、AF组(5.86.87)mm3瘤体积显著小于溶剂对照组(13.41±3.12)mm3(P<0.01),5-Fu组(5.92±1.25)mm3瘤体积显著小于对照组(13.19±2.60)mm3(P<0.01);用药后ATRA组、5-Fu组、AF组端粒酶活性分别为61%(与溶剂对照组比较,P<0.01)、100%,63%(与溶剂对照组比较,P<0.01).
, 百拇医药
    结论 ATRA,5-Fu均能显著抑制裸鼠胃癌移植瘤的生长,ATRA与5-Fu合用在本体内实验条件下未发现有协同抗肿瘤作用,ATRA能抑制胃癌移植瘤端粒酶活性,而5-Fu对其活性无抑制作用,二者合用对胃癌移植瘤端粒酶活性无协同抑制作用. 抑制端粒酶活性可能是ATRA抗癌机制之一.

    主题词 维甲酸;氟脲嘧啶;胃肿瘤;端粒酶;移植;药物疗法;小鼠,裸

    夏忠胜,朱兆华,何守搞. 全反式维甲酸和5-Fu对裸鼠胃癌移植瘤生长和端粒酶活性的影响. 世界华人消化杂志,2000;8(6):674-677

    

    0 引言

, 百拇医药
    端粒酶与肿瘤之间关系密切,已发现90%的肿瘤细胞端粒酶阳性,而正常的体细胞几乎阴性[1]. 端粒酶的激活可能是各种基因改变导致肿瘤细胞获得“永生化”的最后共同通路,因此,通过抑制端粒酶活性阻断肿瘤细胞“永生化”的通路,可达到治疗肿瘤的目的. 本研究在体外实验发现ATRA,5-Fu合用对胃癌细胞具有协同抗肿瘤作用的基础上,进一步探讨ATRA和5-Fu单独和联合应用对胃癌裸鼠移植瘤的生长及端粒酶活性的影响,并从端粒酶角度探讨ATRA和5-Fu的抗肿瘤作用机制.

    1 材料和方法

    1.1 材料
①细胞:人低分化胃粘液腺癌MGC-803细胞株由中科院生物物理研究所提供. ②动物:SPF级♀Balb/c裸小鼠(6~8周龄)由中山医科大学实验动物中心提供. ③主要药品及试剂:全反式维甲酸(上海第六制药厂),5-氟脲嘧啶(上海旭东海普药业有限公司),RPMI-1640培养基(Gibco公司),DMSO(二甲基亚砜)、MTT(噻唑蓝)、CHAPS(3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate)均为Sigma公司产品,Taq酶(Gene公司),TS,ACX引物由加拿大Gender公司合成.
, 百拇医药
    1.2 方法

    1.2.1 药物的配制 5-Fu用生理盐水配制成3mg/mL;ATRA先用DMSO溶解,再加溶剂配制成4mg/mL. 该溶剂[2]内含20mmol/L NaOH, 0.5% Tween-80,3%乙醇,pH值为7.4. 溶剂与DMSO按9∶1体积比混合即为溶剂对照.

    1.2.2 荷瘤裸鼠的制备 胃癌MGC-803细胞培养于含150mL/L%胎牛血清的RPMI-1640培养液中,50mL/L CO2,37℃培养,2.5g/L胰蛋白酶和0.2g/L EDTA复合消化液消化传代. 制备细胞悬液,镜下调整细胞浓度至300万/mL,将细胞悬液0.3mL(约100万个细胞)注入裸鼠颈背皮下,无菌喂养4wk,制备成瘤源裸鼠. 处死瘤源裸鼠,取出移植瘤剪碎成2mm3大小的瘤块,接种至各实验鼠. 无菌喂养1wk制备成荷瘤裸鼠.
, http://www.100md.com
    1.2.3 实验分组及给药 实验设对照组、溶剂对照组、ATRA组、5-Fu组及合用组(AF组),分别用生理盐水、溶剂、ATRA,5-Fu,ATRA+5-Fu腹腔给药,每次以0.1mL/10g裸鼠重量的剂量腹腔注射(5-Fu每日用量为30mg/kg鼠重[3];ATRA每日用量为40mg/kg鼠重[2]),1次/d,共10d. 停药24h后处死裸鼠. 用药d1及停药24h测量肿瘤长短径,按公式T=a2b/2(a为短径,b为长径)计算瘤体积[4].

    1.2.4 移植瘤的处理 无菌取出移植瘤,部分用100mL/L缓冲甲醛固定,用于常规病理学HE染色检查,确证为胃癌组织;部分装入无菌Eppendoff管中,液氮速冻后放入-85℃超低温冰箱保存待测端粒酶.
, 百拇医药
    1.2.5 端粒酶定量检测 采用Kim et al[1]创建的TRAP法,引物采用Kim et al[5]报道的序列,TS引物序列为5'-AATCCGTCGAGCAGAGTT-3',ACX引物序列为5'-GCGCGG(CTTACC)3CTAACC-3'. 电泳凝胶银染显色后用CS-930薄层扫描仪(日本岛津)测定最大吸收峰面积值. 以对照组端粒酶活性为100%,按公式计算各组端粒酶活性. 端粒酶活性(%)=(药物组最大吸收峰面积值÷对照组最大吸收峰面积值)×100%.

    统计学处理 两组资料的均数比较用t检验,多组资料的均数比较用方差分析.

    2 结果
, 百拇医药
    2.1 实验处理前后各组裸鼠移植瘤瘤体积情况 用药前各组之间裸鼠移植瘤体积无差别(P>0.05,表1),用药后ATRA组、AF组裸鼠移植瘤体积明显小于溶剂对照组,5-Fu组裸鼠移植瘤体积明显小于对照组,用药后5-Fu组、AF组裸鼠移植瘤体积明显小于用药后ATRA组. 用药后对照组、溶剂对照组、ATRA组与用药前自身比较裸鼠移植瘤体积明显增加,而用药后5-Fu组、AF组裸鼠移植瘤体积与用药前自身比较无显著差别(P>0.05).

    1 用药前后不同处理组移植瘤瘤体积
组别用药前用药后
n瘤体积(mm3)n瘤体积(mm3)
对照组57.80±3.00513.19±2.60a
溶剂对照组5 6.40±4.17513.41±3.12a
ATRA组85.48±1.4589.26±0.84a,b
5-Fu组85.58±1.8385.92±1.25c,d
AF组86.76±2.2985.86±0.87b,d

, 百拇医药
    aP<0.01, vs 用药前自身;bP<0.01, vs 用药后溶剂对照组;cP<0.01, vs 用药后对照组; dP<0.01, vs 用药后ATRA组.

    2.2 ATRA,5-Fu及二者合用(AF)对移植瘤端粒酶活性的影响

    图1显示的是各处理组电泳凝胶银染条带,将电泳条带进行薄层色谱扫描得各组最大吸收峰面积值(表2). ATRA能显著抑制体内移植瘤胃癌细胞端粒酶活性,而5-Fu对裸鼠移植瘤胃癌细胞端粒酶活性无影响. ATRA与5-Fu合用对裸鼠胃癌移植瘤细胞端粒酶活性无协同抑制作用.

    1 各处理组移植瘤胃癌细胞端粒酶活性检测电泳条带.M:DNA marker; 1:阴性对照; 2:对照组(自身阳性对照)3:溶剂对照组; 4:ATRA组; 5:5-Fu组; 6:AF组
, http://www.100md.com
    2 不同处理组最大吸收峰面积值(A值)和端粒酶活性及其抑制率
组别nA值端粒酶活性(%)端粒酶抑制率(%)
对照组545490.25±9714.66100.00 0.00
溶剂对照组545742.53±7028.91100.00 0.00
ATRA组827922.13±5278.48a61.04a38.96a
5-Fu组846243.34±5820.48100.00 0.00
AF组828813.68±5265.62a62.99a37.10a

, 百拇医药
    aP<0.01, vs 溶剂对照组.

    

    3 讨论


    端粒是染色体自然末端的保护性结构,对于维持染色体的稳定性至关重要,缺少端粒的染色体将导致染色体的不稳定,染色体互相融合、细胞死亡. 端粒的维持通过三种途径,即端粒酶的激活、染色体的重排和转位[6]. 国内外作者[7-15]报道,约90%的肿瘤组织端粒酶阳性,90%的肿瘤细胞都依赖端粒酶途径来维持端粒长度,也就是说,端粒酶是90%的肿瘤细胞“永生化”所必须的,抑制端粒酶活性可导致端粒的净丢失、细胞死亡. 因此,我们可以通过抑制端粒酶活性来治疗肿瘤. 到目前为止,已发现的端粒酶抑制剂包括:①反义核酸[16,17];②反义肽核酸[18];③核苷酸类似物[19-21];④核酶[22];⑤叠氮胸甙[23,24];⑥细胞分化诱导剂[25,26];⑦某些化疗药[27]. 目前检测端粒酶活性方法包括TRAP-银染法[28]、TRAP-放射自显影法[5]、TRAP-闪烁计数法[29]、TRAP-ELISA法[30].
, 百拇医药
    本研究发现ATRA,5-Fu均能抑制胃癌裸鼠皮下移植瘤的生长,但ATRA对胃癌移植瘤生长的抑制作用不如5-Fu强,ATRA与5-Fu合用对胃癌移植瘤生长的抑制作用与单用5-Fu无差别,说明在本体内实验条件下未发现ATRA与5-Fu合用具有协同抗肿瘤作用,这与我们在体外实验中发现二者合用具有协同抗肿瘤作用不同. 从各处理组治疗前后移植瘤体积的变化,我们可以看到,经处理10d后,对照组、溶剂对照组、ATRA组瘤体积均显著增加(P<0.01),5-Fu组瘤体积轻度增加(P>0.05),而AF组治疗后瘤体积小于治疗前,尽管没有统计学的显著性,但可能提示ATRA与5-Fu联用对肿瘤生长有更强的抑制作用.

    1996年,Xu et al[31]用ATRA诱导白血病HL-60细胞分化时,发现HL-60细胞端粒酶活性显著下降. 1997年杨骅et al[32]报道用ATRA诱导分化大肠癌时,大肠癌细胞端粒酶活性下降. 但这些都是在体外实验取得的结果. 目前尚未见ATRA对胃癌细胞端粒酶活性的影响,特别是在体内实验条件下ATRA对裸鼠胃癌移植瘤端粒酶活性影响的报道. 本研究发现ATRA在抑制胃癌移植瘤生长的同时伴有端粒酶活性的降低. 1997年Ku et al[33]报道5-Fu在抑制鼻咽癌细胞生长时未发现其端粒酶活性下降. 1998年Asai et al[34]在比较食管癌细胞对5-Fu化疗敏感性、食管癌细胞的增殖、分化与端粒长度及端粒酶活性的关系时发现,5-Fu不影响端粒酶活性. 本研究在体内实验条件下亦证实上述实验结果. 5-Fu能明显抑制胃癌细胞生长,但对其端粒酶活性无影响,ATRA与5-Fu二者合用与ATRA单独应用对端粒酶活性的影响相比较,二者无差别,说明二者合用既无协同作用,也无拮抗作用.
, 百拇医药
    国内外多位作者报道ATRA对多种肿瘤细胞均有诱导分化、抑制生长的作用[35-43]. 近10+a来人们一直在探讨ATRA的作用机制. 关于ATRA的作用机制,近几年研究最为活跃的是受体与基因调节[44-47]. 关于ATRA的作用机制,近几年研究最为活跃的是受体与基因调节. 现已发现二大类维甲酸特异性受体即维甲酸受体(RARs)和视黄醇受体RXRs,RARs又包括RARα,RARβ,RARγ. Naka et al[48]发现ATRA能在转录水平调节对其敏感的胃癌细胞RARs及RXR-α mRNA的生成. Liu et al[49]发现ATRA能在转录水平调节对其敏感的细胞产生RAR-β2 mRNA. 也有作者发现,ATRA可直接调控三磷酸肌醇(IP3)受体基因转录,使IP3受体数目增加,功能表达增强,细胞内钙动员增加,提示ATRA可通过下调节蛋白激酶C(PKC)信息途径发挥作用[50]. 本研究发现ATRA在抑制胃癌移植瘤生长的同时,移植瘤胃癌细胞端粒酶活性下降. 端粒酶作为肿瘤细胞特异性标志,而ATRA能作用于该靶点,为阐明ATRA的作用机制提供了一条新的思路. 根据以往的研究成果和本实验的研究结果,我们推测ATRA的作用机制可能是:ATRA在转录水平调节维甲酸受体mRNA的生成,之后翻译成维甲酸受体,ATRA与维甲酸受体结合通过IP3途径下调节PKC,PKC又进一步调节端粒酶,使端粒酶活性下降,抑制肿瘤细胞生长. 我们发现5-Fu能明显抑制胃癌细胞生长,但对胃癌细胞端粒酶活性无影响. 该实验结果与Ku[33]、Asai[34]的报道一致,虽然所采用的肿瘤细胞株不同,但同样能说明问题. 5-Fu作为消化道肿瘤的首选化疗药物,能特异地作用于细胞周期中的S期,通过抑制胸腺嘧啶合成酶阻止DNA复制,阻止细胞分裂,抑制细胞生长,导致细胞死亡,这是5-Fu的经典作用机制. 本研究发现5-Fu对移植瘤胃癌细胞端粒酶活性无影响,但能显著抑制胃癌移植瘤的生长,说明5-Fu抑制胃癌细胞生长不是通过抑制端粒酶途径来实现的. 我们目前仍认为5-Fu是通过经典的作用机制来实现其抗肿瘤作用. 我们先前在体外实验中发现ATRA与5-Fu合用具有协同抗肿瘤效应,但在体内实验中却未发现二者的协同抗肿瘤作用. 分析可能的原因是:①在体内实验条件下,药物经过体内代谢过程并受到体内各种药物外因素的影响,其作用方式、效应都可能与体外实验不同,因而也有可能ATRA与5-Fu联用在体内实验条件下确实没有协同抗肿瘤效应. ②用药剂量的因素:用药剂量较大,本实验所采用的ATRA的剂量是参考Jiang et al[2]报道的剂量,5-Fu的剂量是参考Kubota et al[3]报道的剂量. 而该二位作者研究的都是某一种药物对裸鼠移植瘤生长的抑制作用,采用的是能产生比较明显作用的较大剂量,我们知道在某种药物已达其最大效应时是观察不出它和其他药物合用的协同作用的. ③用药时间的因素:用药时间过长、过短均不利于观察药物的协同作用,用药时间过短,可能因最大疗效未出现而观察不到协同作用,而当用药时间过长时又可因无论单用还是合用药物的作用已达极限而掩盖了曾经存在的协同作用. 本实验因条件的限制,只选用了一种剂量和一个观察时间终点,如果实施一项采用分级剂量和不同用药时间的研究,将有可能解决这一问题.
, 百拇医药
    4 参考文献

    1 Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific

    association of human telomerase activity with immortal cells and cancer. Science, 1994; 266:2011-2015

    2 Jiang SY, Shyu RY, Chen HY, Lee MMS, Wu KL, Yeh MY. In vitro and in vivo growth inhibition of SC-M1 gastric cancer cells
, http://www.100md.com
    by retinoic acid. Oncology, 1996; 53:334-340

    3 Kubota T, Fujita S, Kodaira S, Yamamoto T, Josui K, Arisawa Y, Suto A, Ishibiki K, Abe O, Mabuchi K. Antitumor activity

    of fluoropyrimidines and thymidylate synthetase inhibition. Jpn J Cancer Res, 1991;82:476-482

    4 Imaizumi M, Kondo T, Taguchi T, Hattori T, Abe O, Kitano M, Wakui A. A standardized method of using nude mice for the
, 百拇医药
    in vivo screening of antitumor drugs for human tumors. Surg Today, 1993;23:412-419

    5 Kim NW, Wu F. Advances in quantification and characterization of telomerase activiuy by the telomeric repeat amplification

    protocol (TRAP). Nucleic Acids Res, 1997;25:2595-2597

    6 Autexier C, Greider CW. Telomerase and cancer:revisiting the telomere hypothesis. TIBS, 1996;21:387-391
, 百拇医药
    7 Yang WT, Xu LZ, Zhang TM, Zhu WP, Li XM, Jin AP, He KL. Telomerase activity in breast carcinoma. Zhonghua Zhongliu

    Zazhi, 1999;21:278-280

    8 Wang X, Zhang YF, Ye LF, Ding Q, Qu LX. Telomerase activity in exfoliated urothelial cells of bladder cancer. Zhonghua Miniao

    Waike Zazhi, 1999;20:267-269

    9 Li ZS, Zhu ZG, Yin HR, Chen SS, Lin YZ. Modified TRAP-PCR in detection of telomerase activity in early diagnosis of stomach
, 百拇医药
    tumors. Huaren Xiaohua Zazhi, 1998;6:939-941

    10 Qiu SL, Huang JQ, Wang YF, Peng ZH. Analysis of telomerase activity in colorectal cancer, precancerous lesions and cancer

    washings. Huaren Xiaohua Zazhi, 1998;6:992-993

    11 Yang SM, Fang DC, Luo YH, Lu R, Liu WW. Telomerase activity in gastric cancer and premalignant lesions: determination and its

    clinical significance. Zhonghua Yixue Zazhi, 1998;78:207-209
, 百拇医药
    12 Yoshida K, Sugino T, Goodison S, Warren BF, Nolan D, Wadsworth S, Mortensen NJ, Toge T, Tahara E, Tarin D. Detection

    of telomerase activity in exfoliated cancer cells in colonic luminal washings and its related clinical implications. 

    Br J Cancer, 1997;75:548-553

    13 Yashima K, Litzky LA, Kaiser L, Rogers T, Lam S, Wistuba II, Milchgrub S, Srivastava S, Piatyszek MA, Shay JW, Gazdar AF.
, 百拇医药
    Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. 

    Cancer Res, 1997;57:2373-2377

    14 Nakashio R, Kitamoto M, Tahara H, Nakanishi T, Ide T, Kajiyama G. Significance of telomerase activity in the diagnosis of

    small differentiated hepatocellular carcinoma. Int J Cancer, 1997;74:141-147

    15 Kojima H, Yokosuka O, Imazeki F, Saisho H, Omata M. Telomerase activity and telomere length in hepatocellular carcinoma and
, 百拇医药
    chronic liver disease. Gastroenterology, 1997;112:493-500

    16 Hou LH, Sun BZ. The effect of telomerase antisense oligodeoxynucleotides on the growth of HL-60 cell line. 

    Disi Junyi Daxue Xuebao, 1999;20: 653-655

    17 Fujimoto K, Takahashi M. Telomerase activity in human leukemic cell lines is inhibited by antisense pentadecadeoxy

    nucleotides targeted against c-myc mRNA. Biochem Biophys Res Commun, 1997;241:775-781
, 百拇医药
    18 Hamilton SE, Pitts AE, Katipally RR, Jia XY, Rutter JP, Davies BA, Shay JW, Wright WE, Corey DR. Identification of determinants

    for inhibitor binding within the RNA active site of human telomerase using PNA scanning. Biochemistry, 1997;36:11873-11880

    19 Pandit B, Bhattacharyya NP. Detection of telomerase activity in Chinese hamster V79 cells and its inhibition by 7-deaza-

    deoxy guanosine triphosphate and (TTAGGG)4 in vitro. Biochem Biophys Res Commun, 1998;251:620-624
, http://www.100md.com
    20 Fletcher TM, Salazar M, Chen SF. Human telomerase inhibition by 7-deaza-2'-deoxypurine nucleoside triphosphates. 

    Biochemistry, 1996;35:15611-15617

    21 Pitts AE, Corey DR. Inhibition of human telomerase by 2'-O-methyl-RNA. Proc Natl Acad Sci USA,

    1998:11549-11554

    22 Kanazawa Y, Ohkawa K, Ueda K, Mita E, Takehara T, Sasaki Y, Kasahara A, Hayashi N. Hammerhead ribozyme-mediated inhibition
, http://www.100md.com
    of telomerase activity in extracts of human hepatocellular carcinoma cells. Biochem Biophy Res Commun,1996;225:570-576

    23 Gomez DE, Tejera AM, Olivero OA. Irreversible telomere shortening by 3'-azido-2',3'-dideoxythymidine (AZT)

    treatment. Biochem Biophys Res Commun, 1998;246:107-110

    24 Tan DJ, Wang SW, Gu ZY, Wang HZ, Zhao YL, Hao HJ, Liu LL. The influence of azidothymidine on telomerase activity and
, 百拇医药
    cell proliferation in gastric cancer. Zhongguo Laonian Yixue Zazhi, 1999;18:232-235

    25 Savoysky E, Yoshida K, Ohtomo T, Yamaguchi Y, Akamatsu KI, Yamazaki T, Yoshida S, Tsuchiya M. Down-regulation of

    telomerase activity is an early event in the differentiation of HL60 cells. Biochem Biophys Res Commun, 1996;226:329-334

    26 Liu XS, Lou LS, Tang ZS, Jiang JK, Zhang LP, Kang GF. The inhibition of telomerase activity of leukemia cells by retinoic
, http://www.100md.com
    acids derivative R013-7410. Chongqing Yike Daxue Xuebao, 1998;23:346-348

    27 Meng ZQ, Yu EX, Song MZ. Inhibition of telomerase activity of human liver cancer cell SMMC-7721 by chemotherapeutic

    drugs. Shijie Huaren Xiaohua Zazhi, 1999;7:252-254

    28 Sun LB, Weng JM, Zhang M, Xie D, Zhao GQ, Luo CQ. Detection of telomerase activity of cells in vitro by TRAP-silver
, http://www.100md.com
    stainning. Aizheng, 1997;16:468-469

    29 Savoysky E, Akamatsu KI, Tsuchiya M, Yamazaki T. Detection of telomerase activity by combination of TRAP method and

    scintillation proximity assay(SPA). Nucl Acid Res, 1996;24:1175-1176

    30 Wei LX, Guo YJ, Yan ZL, Shi JX, Shen F, Xie TP, Chui ZF, Wu MC. Detection of human telomerase activity by telomerase

    TRAP-ELISA assay. Zhonghua Zhongliu Zazhi, 1998;20:264-266
, 百拇医药
    31 Xu D, Gruber A, Peterson C, Pisa P. Supression of telomerase activity in HL60 cells after treatment with differentiating

    agents. Leukemia, 1996;10:1354-1357

    32 Yang H, Zhang H, Chai XH, Yu LL, Wang XP, Zheng S. The differentiation and inhibition of telomerase activity of large

    intestinal cancer cell by retinoic acid. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 1997;4:245
, 百拇医药
    33 Ku WC, Cheng AJ, Wang TCV. Inhibition of telomerase activity by PKC in hibitrs in human nasopharyngeal cancer cells in

    culture. Biochem Biophys Res Commun, 1997;241:730-736

    34 Asai A, Kiyozuka Y, Yoshida R, Fujii T, Hioki K, Tsubura A. Telomere length, telomerase activity and telomerase RNA expression

    in human esophageal cancer cells:correlation with cell proliferation, differentiation and chemosensitivity to anticancer
, http://www.100md.com
    drugs. Anticancer Res, 1998;18:1465-1472

    35 Sutton LM, Warmuth MA, Petros WP, Winer EP. Pharmacokinetics and clinical impact of all-trans retinoic acid in metastatic

    breast cancer: a phase Ⅱ trial. Cancer Chemother Pharmacol, 1997;40:335-341

    36 Treat J, Friedland D, Luginbuhl W, Meehan L, Gorman G, Miller W Jr, Bavaria J, Kaiser L . Phase Ⅱ trial of all-trans retinoic acid
, http://www.100md.com
    in metastatic non-small cell lung cancer. Cancer Invest, 1996;14:415-420

    37 Jiang SY, Shyu RY, Chen HY, Lee MMS, Wu KL, Yeh MY. In vitro and in vivo growth inhibition of SC-M1 gastric cancer cells

    by retinoic acid. Oncology, 1996;53:334-340

    38 Zhu WY, Jones CS, Amin S, Matsukuma K, Haque M, Vuligonda V, Chandraratna RA, De-Luca LM. Retinoic acid increases
, http://www.100md.com
    tyrosine phosphorylation of focal adhesion kinase and paxillin in MCF-7 human breast cancer cells. Cancer Res, 1999;59:85-90

    39 Zhou HG, Gu GW. Prevention of liver cancer by retinoids. Shijie Huaren Xiaohua Zazhi, 1999;7: 82-83

    40 Chen Y, Xu CF. All-trans-retinoic acid induced differentiation in human gastric carcinoma cell line SGC-7901. 

    Xin Xiaohuabingxue Zazhi, 1997;5:491-492
, 百拇医药
    41 Chen YQ, Wu Q, Chen ZM, Su WJ, Chen F. Effects of retinoic acid on metastatic ability of gastric cancer cells MGc-80-3

    in vivo and in vitro. Huaren Xiaohua Zazhi, 1998;6:869-872

    42 Haskovec C, Lemez P, Neuwirtova R, Wilhelm J, Jarolim P. Differentiation of human myeloid leukemia cell line ML-1 induced by

    retinoic acid and 1, 25-dihydroxyvitamin D3. Neoplasma, 1990;37:565-572
, 百拇医药
    43 Sun YX, He ZP, Cheng F, Chen SS. Retinoic acid induced differentiation of human gastric cancer cells. 

    Zhonghua Zhongliu Zazhi, 1994;16:15-17

    44 Huang N, Qu LB, Zhu QQ, Zhu FM, Yang GZ, Guo ZR. The study of relationship of construction and effect of retinoids. 

    Yaoxue Xuebao, 1999;34:358-362

    45 Wang WP, Yang Y, Su YX. Expression and regulation of retinoic acid receptors gene of human peripherial lymphocyte. 
, http://www.100md.com
    Yinyang Xuebao, 1998;20:276-280

    46 Chao XH, Han R. Binding activity of retinoids with recombinant human retinoic acid receptor RARα. 

    Zhonghua Zhongliu Zazhi, 1998;20:193-195

    47 Yu LM, Shao ZM, Chai SJ, Jiang M, Han QX, Shen ZZ. Growth inhibitory effect of retinoic acid in human breast cancer cells

    correlates with retinoic acid receptor-α expression. Zhonghua Zhongliu Zazhi, 1996;18:429-432
, 百拇医药
    48 Naka K, Yokozaki H, Domen T, Tayashi K, Kuniyasu H, Yasui W, Lotan R, Tahara E. Growth inhibition of cultured human gastric

    cancer cells by 9-cis-retinoic acid with induction of cdk inhibitor Waf1/Cip1/Sdi1/p21 protein. Differentiation, 1997;61:313-320

    49 Liu G, Wu M, Levi G, Ferrari N. Inhibition of cancer cell growth by all-trans retinoic acid and its analog N-

    (4-hydroxyphenyl)retinamide:a possible mechanism of action via regulation of retinoid receptors expression. 

    Int J Cancer, 1998;78:248-254

    50 Raghu P, Hasan G. The inositol 1,4,5-triphosphate receptor expression in Drosophila suggests a role for IP3 signalling in

    muscle development and adult chemosensory functions. Dev Biol, 1995;171:564-577, http://www.100md.com(夏忠胜 朱兆华 何守搞)