当前位置: 首页 > 期刊 > 《世界华人消化杂志》 > 2001年第7期
编号:10697304
大鼠失血性休克复苏后肠屏障功能障碍
http://www.100md.com 2001年7月15日 《世界华人消化杂志》 2001年第7期
     中国人民解放军第三军医大学大坪医院野战外科研究所普通外科 重庆市 400042

    张连阳,男,1966-04-10生,广东省潮阳市人. 1987年第三军医大学医疗系毕业,学士,2000年11月第三军医大学博士,副教授,副主任,主要从事胃肠道动力性疾病、大肠癌等有关疾病的研究,发表论文20余篇,主编《肿瘤化学治疗敏感性与抗药性》,副主编《便秘临床基础》、《现代小外科学》,参编专著10余部.

    项目负责人 张连阳,400042,重庆市,第三军医大学大坪医院野战外科研究所普通外科.

    Gut barrier function disturbance posterior to hemorrhagic shock resuscitation in rats

    
Lian Yang Zhang, Zheng Guo Wang, Pei Fang Zhu, Hong Jun Qin and Su Ya La Tu Tang

    General Surgery Department, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, China

    Correspondence to: Lian Yang Zhang, General Surgery Department, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing 400042, China

    Tel. 0086-23-68757248

    Email. a68740317@ctq.cq.cn.

    Received 2001-03-19 Accepted 2001-03-28

    

    Abstract

    AIM
To investigate the gut barrier function disturbance after hemorrhagic shock resuscitation.

    METHODS A total of 108 Wistar rats were randomly divided into sham shock (SS) group and hemorrhagic shock resuscitation (HS) group. Small bowel transit was measured with coloring matter and the blood flow volume of intestinal tract were measured by isotope label biological microglobulin.The intestinal permeability of jejunum and ileum were determined by two molecular probing needle, FITC-D and HRP Ⅱ.

    RESULTS An obvious retarding of intestinal transit after hemorrhagic shock resuscitation was seen,the speed of intestinal transit at 1 and 2h of HS was 13.5% and 24.6% (vs SS 51.5% and 56.6%, P< 0.01). The blood flow volume of intestinal tract after HS was decreased significantly, the blood flow volume at 1 and 2h after HS of jejunum, ileum and colon was 0.52 and 0.47mL·min-1·g-1 (vs SS 1.13 and 1.04,P<0.05), 0.43 and 0.41mL·min-1·g-1 (vs SS 0.80 and 0.80,P<0.05), 0.36 and 0.27mL·min-1·g-1 (vs SS 0.62 and 0.64,P<0.01). At the same time, the intestinal permeability of jejunum and ileum to FITC-D and HRP was increased. The level of FITC-D in portal vein 1 and 2h HS after injecting FTIC-D into jejunum was 1.38 and 1.41mg·L-1 (vs SS 0.14 and 0.13,P<0.01), after into ileum was 0.18 and 0.21mg·L-1 (vs SS 0.03 and 0.03,P<0.01) hemorrhagic shock resuscitati on; and after injecting HRP into jejunum was 6.25 and 8.16μ g·L-1 (vs SS 3.18 and 2.88,P<0.01), into ileum was 3.15 and 3.08μg·L-1 (vs SS 1.59 and 1.57,P<0.01). The bacteria in jejunum and ileum of HS were overgrowth, jej unum 1 and 2h was 58.0, 82.0(×103 CFU/cm2)(vs SS 9.4 and 9.8,P<0.05), ileum 2 and 4h was 114.7 and 71.2 (×103CFU/cm2) (vs SS 10.2 and 20.4,P<0.05). And the bacterial translocation incidence in bacteremia, liver, spleen, kidney and mesenteric lymph nodes significantly increased.

    CONCLUSION After hemorrhagic shock resuscitation,there is gut barrier function disturbance. The overgrowth of bacteria in jejunum and ileum, caused by slow intestinal transit, and the increase of intestinal permeability of jejunum and ileum as a result of decrease of intestinal blood flow volume may play an important role on gut bacterial translocation.

    Subject headings shock, hemorrhagic; resuscitation; intestines/physiopathology;intestines/microbiology; bacterial translocation

    Zhang LY, Wang ZG, Zhu PF, Qin HJ, Tang SYLT. Gut barrier function disturbance posterior to hemorrhagic shock resuscitation in rats. Shijie Huaren Xiaohua Zazhi, 2001;9(7):767-770

    

    目的
探讨大鼠失血性休克复苏后的肠屏障功能,以及与肠道传输和血流量的关系.

    方法 108只Wistar大鼠随机分为假休克(SS)组和失血性休克复苏(HS)组,染料法测定肠道传输,同位素标记生物微球法测量肠道血流量,应用荧光素异硫氢酸葡聚糖(FITC-D)和辣根过氧化酶(HRP)Ⅱ型两种分子探针测定小肠通透性,同时观察肠腔内细菌繁殖和细菌移位.

    结果 HS组1, 2h时相点小肠传输速率为13.5%和24.6%,较SS组的51.5%和56.6%显著延迟(P<0.01). HS组1和2h空肠、回肠和结肠血流量显著降低,分别为0.52和0.47mL·min-1·g-1(SS组的1.13和1.04, P<0.05), 0.43和0.41mL·min-1·g-1(SS组0.80和0.80, P<0.05), 0.36和0.27mL·min-1·g-1(SS组0.62和0.64, P<0.01);HS组1, 2h后肠腔内注射FITC-D门静脉血中含量显著升高,空肠内注射后分别为1.38和1.41mg·L-1(SS组0.14和0.13,P<0.01 ),回肠内注射后分别为0.18和0.21mg·L-1(SS组0.03和0.03,P< 0.01);HS组1, 2h后肠腔内注射HRP门静脉血中含量显著升高,空肠内注射后分 别为6.25和8.16μg·L-1(SS组3.18和2.88,P<0.01),回肠内注 射后分别为3.15和3.08μg·L-1(SS组1.59和1.57,P<0.01);HS组1, 2和4h后小肠内细菌含量增加,空肠1, 2h为58.0, 82.0(×103 CFU/cm2)(SS组9.4, 9.8,P<0.05),回肠2, 4h为114.7, 71.2(×103CFU/cm2)(SS组10.2, 20.4,P<0.05),伴随细菌 移位的发生.

    结论 失血性休克复苏后存在肠屏障功能损害,肠道传输延迟导致的肠道内细菌过度繁殖和肠道血流量下降引起的肠道通透性增加可能是肠源性细菌移位的重要机制.

    主题词 休克,出血性;复苏术;肠/病理生理;肠/微生物;细菌移位

    张连阳, 王正国, 朱佩芳, 秦红军, 唐苏雅拉图. 大鼠失血性休克复苏后肠屏障功能障碍. 世界华人消化杂志,2001;9(7):767-770

    0 引言休克、创伤情况下,胃肠道不但是易受损的靶器官,同时还在MODS的发生发展中起重要作用,被称为MODS的动力器官[1] 、“外科应激条件下的中心器官”[2]或是激发机体免疫炎症系统的阀门之一[3]. 失血性休克是创伤及外科手术后的常见并发症,但失血性休克复苏后肠屏障功能改变,尤其与肠道传输和血流量的关系等尚未见报道. 我们探讨大鼠失血性休克复苏后,肠道传输功能、血流量及肠屏障功能,包括肠道通透性和肠源性细菌移位的变化.

    1 材料和方法1.1 材料 健康Wistar大鼠108只,体质量(200±30)g,雌雄不拘. 实验前置(22±3)℃室温,3只 大鼠/笼,雌雄分笼,饲养1wk,普通饲料喂养,使其适应. 休克前禁食12h ,饮水自由. 随机将动物分为2组:①假休克(sham shock group, SS)组,同休克组一样分离左股动、静脉,但不放血,仅结扎之;②失血性休克复苏(hemorrhagic shock, HS)组. 分别于休克前、休克复苏后1, 2和4h取观察指标样本数取6个. 大鼠模型[2]乙醚麻醉后,一侧股动脉插管,动物全身肝素化(250U·kg-1),动脉插管外接三通,分别接水银血压器监测血压及放血;同侧股静脉插管,用于复苏时回输血及盐水. 待动物稳定15min后,进行休克实验. 用注射器经动脉插管10min内快速放血至平均动脉压4.67kPa~5.33kPa,维持60min,记录最大失血量,之后缓慢回输全部失血及等量等渗盐水复苏. 拔出动脉和静脉插管,结扎血管,缝合伤口.

    1.2 方法

    1.2.1 肠道传输 以葡聚糖蓝2000为肠内标志物,加去离子水配成2g·L-1的水溶液. 于各时相点前20min各组动物灌服2g·L-1葡 聚糖蓝2000溶液0.4mL,各时相点麻醉后剖腹,将小肠自肠系膜上分离,盲肠侧在上、幽门侧在下,以5g重物牵悬挂,量取幽门至色素最前端、幽门至盲肠的距离,二者之比为小肠传输速率.

    1.2.2 肠道血流量测定 采用99mTc标记蟾蜍红细胞作为放射性生物微球法[4]. 主要步骤:①生物微球制备,取蟾蜍1只, 探针插入脊髓处死,从心尖抽血3mL~4mL,机械抗凝、过滤、离心去上清,0.65g·L-1蛙生理盐水洗去上清后加入3g·L-1戊二醛3mL混匀,置4℃冰箱过夜备用;②蟾蜍红细胞记数,确定变异红细胞数少于2%. ③99mTc标记,蟾蜍红细胞酸化,移入氯化亚锡500g·L-1无水乙醇中,4.07MBq 99mTc加入混匀,室温下孵育40min;④脏器血流量测定,动物麻醉、固定,分离同侧颈总动脉和股动脉,在生理记录仪引导下将左心室导管插入左心室记录动脉血压和注射生物微球,股动脉插管用于抽参考血. 将1mL注射器固定 于恒速抽血仪上与股动脉导管相连. 取标记好的蟾蜍红细胞悬液1mL,经左心室导管 在30s内匀速注入左心室,并用0.5mL生理盐水将导管内残留微球在10s内冲入左心室;在注射生物微球前10s开始从股动脉,以(1.00±0.05)mL·min-1的恒速抽血1mL,作参考血样本. 注入微球后处死动物,取空肠、回肠和结肠称重;用γ计数仪分别测定参考血及被测组织的放射活性,按Domenech公式计算器官血流量:器官血流量(mL·min-1·g-1)=参考血流速(mL·min-1)×组织放射强度(cpm)÷组织质量(g)

    1.2.3 肠屏障功能 ①肠道通透性测定[5]: 应用荧光素异硫氢酸葡聚糖(fluorescein isothiocyanate dextran,FITC-D)和辣根过氧化酶(horse-radish peroxidase,HRP)Ⅱ型两种分子探针. 麻醉后经中线切口入腹,显 露空肠(幽门下10cm~20cm)、回肠(盲肠上5cm~15cm)各10cm 长一段,结扎远端,经近端注入准确定量的FITC-D或HRP 1mL(浓度7g·mL-1)后,结扎近端,关腹,25min后再剖腹,准确于注射30min后从门静脉抽血2mL,1mL以生理盐水2mL稀释后离心,取上清-20℃保存,以分光光度计(450nm)测定HRP;1mL加入1.9mL pH 10.3 TRIS (50mmol·L-1) -NaCl(150mmol·L-1)缓冲液中,混匀后离心(2800rpm×15min,4℃),取上清液-20℃保存,荧光光度计测定FITC-D(激发波长480nm,发射波长520nm). ②肠道内细菌检测[5]:取空肠(幽门下10cm~11cm)和回肠(距盲肠10cm~11cm)各1cm长肠段,PBS清洗肠内容物后,在10mL胰蛋白酶大豆培养基(TSB)中搅拌5min,重复5次,最后加NS 2mL匀浆,取5μL接种于羊血培养板, 37℃ 24h~48h计菌落数. 以每cm2肠壁中菌落形成单位(coloning-forming unit,CFU)数表示肠道内细菌量. ③细菌移位:A.血液中细菌检测:抽取下腔静脉 血1mL,加入19mL肉汤培养基中,置37℃孵箱内,24h及48h取出,肉汤培养基有混浊、沉淀、菌膜及色素等判断血培养阳性;B.脏器组织中细菌检测:分别取0.3g~0.5g肝、脾、肾和肠系膜淋巴结(MLN),称重后分别加NS 0.6mL~1.0mL,制成组织匀浆;取5μL匀浆液接种于羊血培养板上 ,37℃孵育24h~48h后,计算平板上生长的总菌落数. 如观察48h无细 菌生长者,则判断为无菌生长. 细菌移位的数量以每克组织中含有多少个菌落(CFU)表示.统计学处理 结果以“均数±标准差”表示;实验数据分别采用单因素方差分析和t检验处理,后者采用Microsoft Excel统计程序处理并作图.

    2 结果肠道传输:HS组1, 2h时相点小肠传输速率为13.5%和24.6%,较SS组的51.5%和56.6%显著延迟(P<0.01, 表1). HS组1h和2h空肠、回肠和结肠血流量显著降低,分别为0.52和0.47mL·mi n-1·g-1(SS组的1.13和1.04,P<0.05), 0.43和0.41mL· min-1·g-1(SS组0.80和0.80,P<0.05), 0.36和0.27mL· min-1·g-1(SS组0.62和0.64,P<0.01, 表2).HS组1, 2h后肠腔内注射FITC-D门静脉血中含量显著升高, 空肠内注射后分别为1.38和1.41mg·L-1(SS组0.14和0.13,P<0.01),回肠内注射后 分别为0.18和0.21mg·L-1(SS组0.03和0.03,P<0.01,表3) . HS组1, 2h后肠腔内注射HRP门静脉血中含量显著升高,空肠内注射后分别为6.25和8.16μg·L-1(SS组3.18和2.88,P<0.01),回肠内注射后分别为3.15和3.08μg·L-1(SS组1.59和1.57,P<0.01,表4).

    1 大鼠失血性休克复苏后小肠传输(x±s %,n=6)
分组1h2h4h
SS51.5±11.656.6±5.651.5±8.7
HS13.5±11.69b24.6±8.3b37.0±10.8


    bP<0.01 vs SS.

    2 大鼠失血性休克复苏后肠道血流量改变 (x±s, mL/min-1·g-1n=6)
分组空肠回肠结肠
1h2h1h2h1h2h
SS1.13±0.131.04±0.170.80±0.030.80±0.090.62±0.030.64±0.05
HS0.52±0.24b0.47±0.26b0.43±0.20b0.41±0.29a0.36±0.12b0.27±0.08b


    aP<0.05 vs SS;bP<0.01 vs SS.

    3 大鼠失血性休克复苏后门静脉血FITC-D含量 (x±s, mg·L-1n=6)
分组空肠回肠
1h2h1h2h
SS0.14±0.040.13±0.030.03±0.01 0.03±0.01
HS1.38±0.27b1.41±0.15b0.18±0.04b0.21±0.04b


    bP<0.01 vs SS.

    4 大鼠失血性休克复苏后门静脉血HRP含量 (x±s,μg·L-1n=6)
分组空肠回肠
1h2h1h2h
SS3.18±0.262.88±0.261.59±0.401.57±0.26
HS6.25±1.86b8.16±0.70b3.15±0.75b3.08±0.56b


    bP<0.01 vs SS.

    因为并非每只动物MLN细菌培养都是阳性,所以细菌移位的菌量分别以每实验组细菌培养阳性的MLN中CFU的平均值和每实验组中所有培养的MLN中CFU的平均值加减标准误表示;每组3例以上阳性者行统计学处理;仅1例阳性或2~3例细菌量一样,则标准差为0. 结果HS组1, 2和4h后小肠内细菌含量增加,空肠1, 2h为58.0, 82.0(×103CFU/cm2)(SS组9.4, 9.8,P<0.05),回肠2, 4h为114.7, 71.2(×103CFU/cm2)(SS组10.2, 20.4,P<0.05),伴随细菌移位的发生(表5~7).

    5 大鼠失血性休克复苏后肠道细菌含量 (x±s, ×103 CFU/cm2n=6)
肠段分组1h2h4h
空肠SS9.4±6.69.8±4.99.3±4.7
HS58.0±45.3a82.0±63.2a107.7±97.7
回肠SS30.1±16.310.2±5.420.5±11.8
HS29.0±19.1114.7±70.9b71.2±54.1a
结肠SS89.3±60.771.9±67.280.3±67.5
HS112.5±40.8112.8±69.2102.0±67.0


    aP<0.01 vs SS,bP<0.01 vs SS.

    6 大鼠失血性休克复苏后外周血和MLN细菌移位(n=6)
分组MLN
1h2h4h1h2h4h
SS0/60/60/60/61/60/6
HS4/6a4/6a4/6a4/6b4/6b4/6b


    aP<0.01 vs SS,bP<0.01 vs SS.

    7 大鼠失血性休克复苏后肝、脾和肾细菌移位(n=6)
分组
1h2h4h1h2h4h1h2h4h
SS1/61/60/61/60/61/60/60/60/6
HS6/6b6/6b5/6a6/6b6/6b5/6a3/6a3/6a1/5


    aP<0.01 vs SS,bP<0.01 vs SS.

    3 讨论本实验结果表明,失血性休克复苏后1h~4h存在小肠传输延迟,与大手术[6]、阻断肠系膜上动脉造成肠道缺血再灌注损害后的结果[7]类似,证实休克复苏后小肠可发生严重传输功能障碍. 正常情况下,人类胃肠道血管床的血液量占全身总量的30%. 由于蟾蜍红细胞大小为22.0 μm×15.5μm,既不能通过 毛细血管,又不会栓塞较大的微动脉,不至影响局部血流量. 故我们应用同位素标记的蟾蜍红细胞,即生物微球法,结果表明失血性休克复苏后,虽然经回输全部失血及等量生理盐水,动脉血压亦恢复至休克前水平,但复苏后空肠、回肠和结肠血流量仍显著降低,与 文献结果一致[8,9]. 本结果还表明,失血性休克复苏后,存在空肠和回肠的细菌过度繁殖. 我们认为肠道细菌过度繁殖与肠道传输功能延迟相关. 有报道肝切除后肝衰[10,11]、全胃肠外营养[12]和应用吗啡的危重患者[13]等,伴随肠道传输延迟的有肠道细菌过度生长.

    肠粘膜通透性主要是指分子质量大于150u的分子物质对肠上皮的渗透,肠通透性与肠 屏障功能有关[14,15]. 我们应用分子质量为40000u的HRP[1 6]和分子质量为4387u的FITC-D作为分子探针,测定空肠和回肠对大分子和小 分子物质的通透性,结果表明,失血性休克复苏后空肠和回肠对两种分子探针的通透性均显著升高. 本组肠道通透性的变化与肠道病理结构的改变一致. Grotz et al[16-18]报道夹闭肠系膜上动脉致肠道缺血/再灌注损伤后有肠道通透性增加. 临床上患者肠粘膜通透性增加及其程度与发生感染的严重程度、MODS发生是一致的[14,15]. 推测休克复苏后引起全身及局部多种因素改变,导致的肠粘膜上皮细胞的超微结构(微绒毛和细胞终末网)发生病理改变,通过损害细胞内支架系统而破坏细胞间紧密连接,从而导致肠粘膜通透性增高[17,18].

    肠道细菌移位(bacterial translocation,BT)是指肠道内存活细菌从肠道通过肠粘膜侵入到肠道以外的其他部位,如MLN、肝、脾、血液以至全身的感染过程. 我们证实失血性休克复苏后菌血症发生率、肝脾肾和MLN细菌移位发生率明显升高,包括细菌移位例数或移位细菌数量均有显著升高,外周血和MLN细菌培养阳性率达66.7%,脏器细菌移位发生率则在50%~100%之间,与文献结果类似[19-21]. 但细菌移位和MODS之间的关系有 待进一步研究明确[22-26],Peitzman[27]认为在创伤患者细菌移位到MLN并非常见现象. 如果说肠道细菌的过度生长为细菌移位提供了前提,则肠屏障功能障碍是细菌移位的必要条件.

    我们认为失血性休克复苏后早期导致肠屏障功能障碍的机制包括[17]:①肠道血流 量下降,组织缺血缺氧,降低肠道上皮的更新能力[28];②肠道菌群紊乱 、细菌过度繁殖;③肠道传输功能障碍,肠道节律性的定向蠕动可使肠内容物不停地向下冲刷,而肠传输功能障碍可引起肠道细菌过度繁殖和粘附于肠上皮;④肠粘膜通透性增高; ⑤肠道粘膜的缺血/再灌注损害. 早期内脏低灌注使胃肠道发生进行性功能障碍,胃肠道 成为病原菌和内毒素的储存地,与后期MODS发生有关[29]. 其他作者的研究还发现 失血性休克可引起明显的内毒素血症,休克越重,内毒素血症发生率及血浆内毒素水平越高[30],同时机体对内毒素的敏感性增加,进一步引起胃肠道等脏器损害.长期以来,有关MODS中胃肠道功能障碍或衰竭定义不清[31,32],而多数学者提出 的MODS诊断标准并不包括胃肠道衰竭的标准. 通过本研究结合文献,我们认为,失血性休克复苏后胃肠道功能障碍主要包括胃肠道动力障碍、肠屏障功能障碍、营养吸收功能障碍和胃肠道出血.

    致谢 衷心感谢第三军医大学病理生理教研室刘明福老师在脏器血流量测定中给予的指导和帮助.

    4 REFERENCES1 Wilmore DW, Smith RJ, O′Dwyer ST. The gut: a central organ after surgical stress. Surgery, 1988;104:917-923

    2 Meakins JL, Marshall JC. The gastrointestinal tract: the “motor” of multip le organ failure. Arch Surg, 1986;121:197-201

    3 Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg,1996;20:411-417

    4 Wang JX, Yu ZJ. Jin HZ. Mensurating the blood flow volume of animal organs by 51Cr and 99mTc label biological microglobulin.

    Zhongguo Yaoli Xuebao, 1985;6:248-251

    5 Jiang JX, Chen HS, Diao YF. Distributing of endogenesis endotoxin in tissue or blood circulation and its effect on function of organs

    after hemorrhagic shock resuscitation. Jiefangjun Yixue Zazhi, 1998;23:131-132

    6 Wang DX, Guo W, Wang Q. Alterations of intestinal transit time following ischemia-reperfusion injury in rat. Dig Surg, 1993;10:189-193

    7 Udassin R, Eimerl D, Schiffman J. Postischemic intestinal motility in rat is inversly correlated to length of ischemia: an in vivo animal

    model. Dig Dis Sci, 1995;40:1035-1038

    8 Krejci V, Hiltebrand L, Banic A. Continuous measurements of microcirculatory blood flow in gastrointestinal organs during acute

    haemorrhage. Br J Anaesth, 2000;84:468-475

    9 Tumage RH, Kadesky KM, Rogers T. Neutrophil regulation of splanchnicblood flow after hemorrhagic shock. Ann Surg, 1995;222:66-72

    10 Wang XD, Soltesz V, Andersson R. Cisapride prevents enteric bacterial overgrowth and translocation by improvement of intestinal

    motility in rats with acute liver failure. Eur Surg Res, 1996;28:402-412

    11 Pardo A, Bartolí R, Lorenzo Zúiga V. Effect of cisapride on intestinal bacterial overgrowth and bacterial translocation in cirrhosis.

    Hepatology, 2000;31:858-863

    12 Kueppers PM, Miller TA, Chen CYK. Effect of total parenteral nutritin plus morphine on bacterial translocation in rats. Ann Surg,1993;217:286-292

    13 Scott LD, Chhall DL. Influence of interdigestive myoelectric complex on enteric flora in the rat. Gastroenterology, 1982;82:737-745

    14 Pape HC, Dwenger A, Regel G. Increased gut permeability after multiple trauma. Br J Surg, 1994;81:850-852

    15 Doig CJ, Sutherland LR, Sandham JD. Increased intestinal permeability is associated with the development of multiple organ

    dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med, 1998;158:444-451

    16 Grotz MR, Deitch EA, Ding J. Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg, 1999;229:478-486

    17 Messick WJ, Koruda M, Meyer A. Differential changes in intestinal permeability following burn injury. J Trauma, 1994;36:306-312

    18 Yassin MMI, Barros AAB, Parks TG. Lower limb ischaemia-reperfusion injury alters gastrointestinal structure and function. Br J Surg,1997;84:1425-1429

    19 Koji N, Ikoma A, Suzuki T. Amelioration of intestinal dysmotility and stasis by octreotide early after small-bowel autotransplantation

    in dogs. Am J Surg, 1995;169:294-299

    20 Runkel NF, Moody FG, Smith GS. The role of the gut in the development of sepsis in aute pancreatitis. J Surg Res, 1991;51:18-23

    21 Eaves-Plyles T, Alexander JW. Rapid and prolonged impairment of gut barrier function after thermal injury in mice. Shock,1998;9:95-100

    22 Hebra A, Hong J, McGowan KL. Bacterial translocation in mesecteric ischemia-reperfusion injury is dysfunctional motility the link?

    J Pediatric Surg, 1994;29:280-287

    23 Zhao J, Li ZL, Shi ZG. An experiment study of the TPN inducing enteric sepsis after shock resuscitation. Zhonghua Chuangshang

    Waike Zazhi, 1995;11:97-98

    24 Nieuwenhuijzen GA, Deitch EA, Goris RJ. The relationship between gut- dervied bacteria and the development of multiple organ

    dysfunction syndrome. J Anat, 1996;189(Pt 3):537-548

    25 Nieuwenhuijzen GA, Deitch EA, Goris RJ. Infection,the gut and the development of the multiple organ dysfunction syndrome.

    Eur J Surg, 1996;162:259-273

    26 Nieuwenhuijzen GA, Goris RJ. The gut: the ‘motor’ of multiple organ dysfunction syndrome? Curr Opin Clin Nutr Metab Care,1999;2:399-404

    27 Peitzman AB, Udekwu AO, Ochoa J. Bacterial translocation in trauma patients. J Trauma , 1991;31:1083-1087

    28 Rowlands BJ, Soong CV, Gardiner KR. The gastrointestinal tract as a barrier in sepsis. Br Med Bull, 1999;55:196-211

    29 Moore FA. The role of the gastrointestinal tract in postinjury multiple organ failure. Am J Surg, 1999;178:449-453

    30 Charpentier C, Audibert G, Dousset B. Is endotoxin and cytokine release related to a decrease in gastric intramucosal pH after

    hemorrhagic shock? Intensive Care Med, 1997;23:1040-1048

    31 Deitch EA. Multiple organ failure: pathophysiology and potential future therapy. Ann Surg, 1992;216:117-134

    32 Sauaia A, Moore FA, Moore EE, Lezotte DC. Early risk factors for postinjury multiple organ failure. World J Surg, 1996;20:392-400, http://www.100md.com(张连阳 王正国 朱佩芳 秦红军 唐苏雅拉图)