当前位置: 首页 > 期刊 > 《中华实用医药杂志》 > 2004年第13期
编号:10627569
原子力显微镜在生物医学中的应用
http://www.100md.com 《中华实用医药杂志》 2004年第13期
1原子力显微镜工作原理,2原子力显微镜的应用,4展望,参考文献
     1 原子力显微镜工作原理

    原子力显微镜(Atomic force microscopy,AFM)是一种以物理学原理为基础,通过扫描探针与样品表面原子相互作用而成像的新型表面分析仪器。它属于继光学显微镜、电子显微镜之后的第三代显微镜。AFM通常利用一个很尖的探针对样品扫描,探针固定在对探针与样品表面作用力极敏感的微悬臂上。悬臂受力偏折会引起由激光源发出的激光束经悬臂反射后发生位移。检测器接受反射光,最后接受信号经过计算机系统采集、处理、形成样品表面形貌图像。早期研制的为接触式原子力显微镜,它包括恒力模式和恒高模式。前者利用反射光位移引起的光电二极管输出电压的变化构成反馈回路控制压电陶瓷管伸缩,从而调节固定于扫描器上样品的位置,保持样品和探针间作用力(悬臂弯曲度)不变,测量每一点高度的变化。后者保持样品和探针间的距离不变,测量每一点作用力的大小。这种模式在调节探针与样品距离前即可直接观测悬臂弯曲度的改变。除传统的接触式之外,1993年又研制出轻敲式原子力显微镜。该显微镜在扫描过程中探针与样品表面轻轻接触,悬臂受存在于两者间的排斥力作用随样品表面起伏发生高频振颤。由于探针与样品的接触短暂,因此它更适用于质地脆或固定不牢的样品 [1] 。

     2 原子力显微镜的应用

    在AFM诞生最初的一段时间主要应用于电化学、材料科学等领域。近些年,人们逐渐探索着运用AFM对生物样品进行纳米水平的观测及显微操作等。与其它显微镜相比,AFM的纳米量级的高空间分辨率尤为突出,横向分辨率可达0.1~0.2nm,纵向分辨率高达0.01nm。此外,它不但能够对生理状态下的样品成像,而且可以实时动态地研究样品结构和功能的关系。故而,AFM成为纳米尺度上研究物质结构、特性和相互作用的有力手段。以下主要对这项纳米技术在生物医学研究领域中取得了显著的成绩作一综述。

    2.1 形态结构 作为新兴的形态结构成像技术,AFM实现了对接近自然生理条件下生物样品的观察。这主要由于它具备以下几个特点:(1)与扫描电镜和透射电镜这些高分辨的观测技术相比,样品制备过程简便,可以不需染色、包埋、电镀、电子束的照射等处理过程;(2)除对大气中干燥固定后样品的观察外,还能对液体中样品成像;(3)可以根据观察者的要求,调节样品所处的温度、湿度、大气、真空等观察条件。目前,AFM已广泛地应用于细胞及蛋白、多糖、核酸等生物大分子结构的研究中。对一个细胞而言,AFM不但能够提供长度、宽度、高度等形态方面的信息,还可以满足人们对膜上的离子通道、丝状伪足、细胞间连接等细微结构的研究 [2 ......

您现在查看是摘要页,全文长 13657 字符