当前位置: 首页 > 期刊 > 《中华耳鼻咽喉头颈外科杂志》 > 2000年第2期
编号:10268826
遗传性聋分子病因研究进展
http://www.100md.com 《中华耳鼻咽喉头颈外科杂志》 2000年第2期
     作者:谢鼎华 肖自安 叶胜难

    单位:谢鼎华(410011 长沙 湖南医科大学附属第二医院耳鼻咽喉科 听力研究室);肖自安(410011 长沙 湖南医科大学附属第二医院耳鼻咽喉科 听力研究室);叶胜难(解放军总医院耳鼻咽喉科解放军耳鼻咽喉科研究所)

    关键词:

    中华耳鼻咽喉科杂000236 遗传性聋分为非综合征性耳聋(nonsyndromic hearing impairment,NSHI)和综合征性耳聋(syndromic hearing impairment,SHI)。全部NSHI和绝大部分SHI是孟德尔遗传单基因病,极少部分SHI是染色体病。耳聋是导致交流障碍最常见的疾病。估计全世界约有7亿人口听力损失至少达55 dB。听力下降达25 dB及以上者在青年人中约占1%,60岁人群中约占10%,75岁时上升到50%。学语前聋发病率为1/1 000,约半数是遗传因素所致,其中70%是NSHI,30%是SHI[1]。学语后聋基本上是常染色体显性遗传NSHI。遗传性聋的群体发病率已超过27/万。遗传性聋在16世纪就有文献记载,但由于内耳部位深,体积小,研究手段受到限制,因此认识和理解控制听觉系统的基因研究进展很慢。近10多年来,随着现代科学技术的发展及分子生物学、遗传学的飞速发展,人们对遗传性聋的认识不断加深,并取得了显著进步。
, 百拇医药
    非综合征性耳聋(NSHI)

    NSHI以听力损失为单一症状,遗传方式有常染色体显性、常染色体隐性、X-连锁遗传和线粒体突变母系遗传。NSHI具有高度遗传异质性,医学遗传专家估测可能有100多个基因位点与NSHI有关。1988年,首例NSHI基因定位于Xq13-q21.1。近年来,由于分子遗传全基因组扫描连锁分析技术的发展,利用世界各地发现的一些大样本NSHI家系作为分析模型,每年都有较多NSHI的基因定位。迄今已有72个NSHI遗传基因定位于除16、20号外的21对染色体,已有19型的致病基因被克隆,共15个基因。NSHI的分子遗传学研究及最新进展可从网上信息获得

    (http://dnalab-www.uia.ac.be./dnalab/hhh)。

    一、常染色体显性遗传

    常染色体显性遗传NSHI以前缀DFNA表示。迄今已定位27型(DFNA1~DFNA31),其中有9型已基因克隆,分别为DFNA1[2]、DFNA2[3,4]、DFNA3[5,6]、DFNA5[7]、DFNA8[8]、DFNA9[9]、DFNA11[10]、DFNA12[8]、DFNA15[11](表1)。有些型的位点存在不只一个耳聋疾病基因,已证实GJB3(Connexin31)基因和KCNQ4基因是DFNA2的致聋基因,GJB2(Connexin26)和GJB6(Connexin30)基因是DFNA3的致聋基因。值得一提的是GJB3(Connexin31)基因是1998年由我国夏家辉教授领导的疾病基因克隆小组所克隆。常染色体显性遗传NSHI临床上大多表现为学语后进行性感音神经性聋,语言发育正常。DFNA1和DFNA6首先低频听力受损;其余类型听力减退与年龄和频率有关,多为高频神经性聋,如DFNA2在1 000 Hz以上频率每年下降1~5 dB,1 000 Hz以下每年下降0.2~0.5 dB,逐渐发展为全频率中-重度聋。DFNA3、DFNA8和DFNA12则为学语前中-重度感音神经性聋,听力常保持稳定或仅呈轻微进行性下降。
, 百拇医药
    表1 NSHI基因克隆情况 NSHI类型

    基因

    定位

    DFNA1

    HAID1

    5q31

    DFNA2

    GJB3, KCNQ4

    1p34

    DFNA3

    GJB2, GJB6

    13q12
, 百拇医药
    DFNA5

    DFNA5

    7p15

    DFNA8

    α-tectorin

    11q22-24

    DFNA9

    COCH

    14q12-13

    DFNA11

    Myosin7A

    11q12.3-21
, 百拇医药
    DFNA12

    α-tectorin

    11q22-24

    DFNA15

    POU4F3

    5q31

    DFNB1

    GJB2

    13q12

    DFNB2

    Myosin7A

    11q12.3-21
, http://www.100md.com
    DFNB3

    Myosin15

    17q11.2

    DFNB4

    PDS

    7q31

    DFNB9

    OTOF

    2p22-23

    DFNB21

    α-tectorin

    11q22-24

, 百拇医药     DFN1

    DDP

    Xq22

    DFN3

    POU3F4

    Xq21.1

    12SrRNA

    线粒体

    tRNA-Ser(CUU)

    线粒体

    二、常染色体隐性遗传

    常染色体隐性遗传NSHI以前缀DFNB表示,已定位26型(DFNB1~DFNB28)。基因克隆6型,分别为:DFNB1[5]、DFNB2[12]、DFNB3[13]、DFNB4[14]、DFNB9[15]、DFNB21[16](表1)。常染色体隐性遗传NSHI临床多表现为双耳学语前非进行性重-深度感音神经性聋。但DFNB1的临床表型不衡定,可为先天性聋或1~10岁期间进行性听力下降,受损程度可从轻~重度聋[5];DFNB2听力下降在500~8 000 Hz大于90 dB[12];DFNB4患者50%合并有前庭导水管扩大[14]。唯DFNB8表现为学语后进行性听力减退,但比常染色体显性遗传发病年龄早,听力下降速度快。在欧美国家,先天性聋的20%是由GJB2(Connexin26)基因突变所致,10%由PDS基因突变所致[1],也就是说50%以上的儿童NSHI是由这两个基因突变所致。地中海国家和美国NSHI患者GJB2基因最常见的突变(即突变热点,mutational hot spot)是编码区30-35(GGGGGG)缺失一个G(命名30delG或35delG),约占该基因突变的60%~80%[17];在Ashkenazi犹太人中最常见的突变是167delT,该种突变占53%,而35delG则只占18%[18]。在日本人中,GJB2基因突变仅约占13%[19]。我们的研究表明在中国人群NSHI中该基因的突变流行率也较低(资料待发表)。以上说明NSHI疾病基因的突变流行率存在种族差异。表2 SHI基因克隆情况 综合征
, 百拇医药
    遗传方式

    基因

    定位

    Waardenburg综合征

    常显

    I型

    PAX3

    2q35

    II型

    MITF

    3p14.1-p12.3

    III型

    PAX3
, 百拇医药
    2q35

    IV型

    EDNRB

    13q22

    IV型

    EDN3

    20q13.2-q13.3

    IV型

    SOX10

    22q13

    Stickler综合征

    常显

    COL2A1
, http://www.100md.com
    12q13.11-q13.2

    COL11A2

    6p21.3

    COL11A1

    1p21

    鳃-耳-肾综合征

    常显

    EYA1

    8q13.3

    Treacher Collins综合征

    常显

    TCOF1
, http://www.100md.com
    5q32-q33.1

    Alport综合征

    常显

    COL4A3

    2q36-q37

    COL4A4

    2q36-q37

    X-连锁

    COL4A5

    Xq22

    Jervell and Lange-Nielsen综合征

    常隐
, 百拇医药
    KVLQT1

    11p15.5

    KCNE1

    21q22.1-q22.2.2

    Usher综合征1B型

    常隐

    MYO7A KCNE1

    11q13.511P15.5

    2A型

    常隐

    USH2A

    1q41
, 百拇医药
    Pendred综合征

    常隐

    PDS

    7q21-34

    Norrie病

    X-连锁

    Norrin

    Xp11.3

    Kearns-Sayre综合征

    母系

    mtDNA

    线粒体

, 百拇医药     MERRF综合征

    母系

    tRNAlys

    线粒体

    MELAS综合征

    母系

    tRNAleu(UUR)

    线粒体

    II型糖尿病和神经性聋

    母系

    mtDNA

    线粒体

    注:常显为常染色体显性遗传,常隐为常染色体隐性遗传
, 百拇医药
    三、X-连锁遗传

    X-连锁遗传NSHI以DFN表示,已报道8型(DFN1~DFN8),DFN2、DFN4、DFN6 3型已基因定位,DFN1[20]和DFN3[21]已基因克隆(表1)。DFN1在儿童早期开始进行性听力下降,以后可合并进行性肌张力障碍、痉挛、吞咽困难、精神障碍、偏执狂、皮质盲[20],该型耳聋实质上属于SHI,因疾病早期仅出现听力受损,遗传性聋分型时被纳入了NSHI。DFN3是X-连锁遗传NSHI最常见的类型,临床表现为伴有镫骨固定的混合性聋,神经性聋呈进行性下降,内耳道和前庭异常扩大,小耳蜗,半规管半径变小,高分辨CT扫描可发现内耳道异常扩大、蜗轴异常、蛛网膜下腔与外淋巴腔直接相通,镫骨底板切除或卵圆窗开窗后发生外淋巴液“井喷”,有导致全聋之虞,为手术禁忌[21]。DFN1和DFN6在儿童期开始出现进行性高频感音神经性聋,成年后可达累及全频率的中~深度聋。X-连锁遗传NSHI女性携带者多表现为不完全显性,成年后可出现轻-中度听力受损,可进行性加重。
, http://www.100md.com
    四、线粒体突变

    线粒体突变NSHI为母系遗传,已发现2个线粒体基因突变与NSHI有关,其中12rRNA1555A→G突变表现为氨基糖甙类抗生素中毒性聋[22],tRNASer(CUU)7445A→G突变为先天性聋或进行性感音神经性聋[23]。线粒体突变听力障碍外显率低,可能还有遗传背景或环境因素起作用。

    综合征性耳聋(SHI)

    SHI为全身多处病变并伴听力障碍的综合症候群,遗传方式也涉及常染色体显性、常染色体隐性、X-连锁遗传和线粒体突变母系遗传4种遗传方式。已报道合并听力下降的综合征有100余种,其中有些综合征仅见个别病例报道。美国1995年版《Essential Otolaryngology》[24]将SHI归纳为以下几类:合并色素系统病变的有9种,合并骨骼系统病变的有23种,合并内分泌系统、泌尿系统等病变的有35种。SHI大多为学语前聋,全身病变的临床表现变化多样。SHI种类繁多且较复杂,但常见的SHI主要为Usher综合征和Waardenburg综合征。因SHI病例和大家系的限制,SHI基因定位和克隆进展较慢,从1990年克隆Alport综合征COL4A5基因,至今SHI克隆了疾病基因并被确认的仅13种。
, http://www.100md.com
    一、常染色体显性遗传

    常染色体显性遗传性SHI中,基因克隆的有Waardenburg综合征[25-30]、Alport综合征[31]、鳃-耳-肾综合征[32]、Stickler综合征[33-35] 、Treacher-Collins综合征等5种(表2)。而MITF基因是否就是Tietze综合征的疾病基因尚待证实。基因定位的有甲状旁腺功能减退-感觉神经性聋-肾发育异常综合征(hypopara-thyroidism, sensorineural deafness, renal dysplasia syndrome,HDR综合征)、Ohdo睑裂狭小综合征(Ohdo blepharophimosis syndrome,OBS综合征)、先天性缺指(趾)-外胚层发育不良-腭裂综合征(ectrodactyly, ectodermal dysplasia, and cleft palate syndrome,EEC综合征)等。基因未克隆和定位的有:蓝色虹膜白化病、汗性外胚层发育不良综合征、Forney综合征、雀斑综合征、Leopard综合征、角化症、鱼鳞病、耳聋(KID)综合征、软骨成骨不全、Engelmann综合征、手-听综合征、Klippel-Feil综合征(短颈综合征)、Madelung畸形、Marfan综合征、骨硬(石)化病(Albers-Schonberg病)、耳-面-颈综合征、耳-腭-指综合征、Paget病(畸形性骨炎)、Pirre Robin综合征(腭裂、小颌畸形、舌下垂)、Pyle病(颅骨-干骺端发育不全)、显性遗传的指近端关节粘连和耳聋综合征、Van der Hoeve综合征(成骨不全)、遗传性听神经瘤、Duane综合征、Flynn-Aird综合征、Hermann综合征、二尖瓣关闭不全-关节融合-耳聋综合征、Mobius综合征(先天性双侧面瘫)、鞍鼻-近视-白内障-耳聋综合征、Muckle-Wells综合征(荨麻疹、淀粉样变性、肾炎和耳聋综合征)及Weil综合征等。
, 百拇医药
    二、常染色体隐性遗传

    常染色体隐性遗传SHI现已克隆的有Jervell-Lange-Nielen综合征[36]、Usher综合征ⅠB型[37]和2A型[38]、Pendred综合征[39]等3种(表2)。而花斑病的致病基因是否是KIT原癌基因也未确定。基因定位的有Usher综合征1A、1C和1D亚型、Usher综合征2B亚型、组织细胞增多症-关节挛缩-感音神经性聋综合征、Rogers综合征、Allgrove综合征、Wolfram综合征等。基因未克隆和定位的有:蓝色虹膜病、Usher综合征Ⅱ型、白化病、Klippel-Feil综合征、Mohr综合征、Albers-Schonberg病、耳-腭-指综合征、Van Buchem综合征、Door综合征、耳-面-骨-性腺综合征、Alstrom综合征、Cockayne贫血综合征、Vancoci综合征、Fehr角膜营养不良、Friedreich共济失调、Goldenhar综合征、Hallgren综合征、Hurler综合征、Hunter综合征、Laurence-Moon-Bardet-Biedl综合征、低位耳畸形和传导性聋综合征、Refsum病、肾-生殖器-中耳畸形综合征、Richards-Rundel综合征、Taylor综合征、Rogers综合征及Allogave综合征等。
, 百拇医药
    三、X-连锁遗传

    X-连锁遗传SHI已基因克隆的有Norrie综合征[40]、X-连锁型Alport综合征[41]2种(表2)。KIT原癌基因与X-连锁型花斑病、DDP基因与Mohr-Tranebjaerg综合征、M1V基因与Norrie-Warburg综合征之间是否为因果关系也存疑问。基因定位的有肌张力障碍-耳聋综合征、Mondini样发育不良、Juberg-Marsidi综合征等。

    四、线粒体突变

    线粒体突变SHI疾病基因已克隆的有Kearns-Sayre综合征[42]、MELAS综合征[43]、MERRF综合征[44]、II型糖尿病并神经性聋[45]等4种。蹼足底-皮肤角化-耳聋综合征、Wolfram综合征和进行性痴呆舞蹈综合征的疾病基因迄今未确定。
, 百拇医药
    遗传性聋基因研究展望

    1998年,我们参与夏家辉教授领导的疾病基因克隆小组克隆了“高频神经性耳聋基因GJB3(Connexin31)”的工作,实现我国本土克隆疾病基因零的突破。随着人类基因组计划的进行和表达序列标志(EST)在特殊染色体区的定位,耳蜗特异性互补DNA(complementary DNA,cDNA)文库数量的增加,为克隆新的遗传性聋基因提供了最可能的候选基因。新的致病基因的定位和克隆能为我国在全球基因库抢得更多的专利,更好地保护基因资源,具有重要的意义。

    通信作者:谢鼎华

    参考文献

    1,Van Camp G, Willems PJ,Smith RJ.Nonsyndromic hereditary impairment:unparalled heterogeneity.Am J Hum Genet,1997,60,758-764.
, http://www.100md.com
    2,Lynch ED,Lee MK,Morrow JE,et al.Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous.Science, 1997,278:1315-1318.

    3,Xia JH,Liu CY,Tang BS,et al.Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet, 1998,20:370-373.

    4,Kubisch C,Schroeder BC,Friedrich T,et al.KCNQ4,a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell,1999,96:437-446.
, http://www.100md.com
    5,Kelsell DP,Dunlop J,Stevens HP,et al.Connexin 26 mutations in hereditary non-syndromic sensorineural deafness.Nature,1997,387,80-83.

    6,Grifa A, Wagner CA, D'Ambrosio L,et al.Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus.Nat Genet,1999,23:16-18.

    7,Van Laer L,Huizing EH,Verstreken M,et al.Nonsyndromic hearing impairment is associated with a mutation in DFNA5.Nat Genet,1998,20:194-197.
, http://www.100md.com
    8,Verhoeven K,Van Laer L,Kirschhofer K,et al.Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment.Nat Genet,1998,19:60-62.

    9,Robertson NG, Lu L,Heller S,et al.Mutations in a novel cochlear gene cause DFNA9,a human nonsyndromic deafness with vestibular dysfunction. Nat Genet,1998,20:299-303.

    10,Liu XZ,Walsh J,Tamagawa Y,et al.Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene.Nat Genet,1997,17:268-269.
, 百拇医药
    11,Vahava O,Morell R,Lynch ED,et al.Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science,1998,279:1950-1954.

    12,Liu XZ, Walsh J,Mburu P,et al.Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet, 1997, 16: 188-190.

    13,Wang A, Liang Y, Fridell RA, et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science, 1998, 280: 1447-1451.
, http://www.100md.com
    14,Li XC, Everett LA, Lalwani AK, et al.A mutation in PDS causes non-syndromic recessive deafness. Nat Genet, 1998, 18: 215-217.

    15,Yasunaga S, Grati M, Cohen-Salmon M, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet, 1999, 21: 363-369.

    16,Mustapha M, Weil D, Chardenoux S, et al. An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet, 1999, 8: 409-412.
, http://www.100md.com
    17,Zelante L, Gasparni P, Estivill X, et al. Connexin 26 mutations associated with the most common form of non-syndromic nuerosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet, 1997, 6: 1605-1609.

    18,Sagi M, Lerer, Malmud E, et al. The contribution of mutations 167delT and 35delG in connexin 26 gene to nonsyndromic deafness in Ashkenazi Jews. Am J Hum Genet, 1999(suppl), A2243.

    19,Kudo T, Kure S, Matsubara Y, et al. Identification of a novel common mutation in the connexin 26 gene (GJB2) among Japanese patients with childhood deafness. Am J Hum Genet, 1999(suppl), A840.
, http://www.100md.com
    20,Jin H, May M, Tranebjaerg L,et al. A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet, 1996, 14: 177-180.

    21,de Kok YJ,van der Maarel SM,Bitner-Glindzicz M, et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science, 1995, 267: 685-688.

    22,Prezant TR,Agapian JV,Bohlman MC,et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet, 1993, 4: 289-294.
, http://www.100md.com
    23,Reid FM,Vernham GA,Jacobs HT. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat, 1994,3: 243-247.

    24,Lee KJ, ed. Essential Otolaryngology. 6th ed. Norwalk: Appleton and Lange. 1995.

    25,Tassabehji M, Read AP, Newton VE,et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature,1992,355: 635-636.
, 百拇医药
    26,Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet,1994,8:251-255.

    27,Hoth CF, Milunsky A, Lipsky N,et al.Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet,1993,52:455-462.

    28,Attie T, Till M, Pelet A,et al.Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet,1995,4: 2407-2409.
, 百拇医药
    29,Edery P,Attie T,Amiel J,et al.Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet, 1996, 12: 442-444.

    30,Pingault V, Bondurand N, Kuhlbrodt K,et al.SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet, 1998,18: 171-173.

    31,Mochizuki T, Lemmink HH, Mariyama M, et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome.Nat Genet, 1994, 8: 77-81.
, http://www.100md.com
    32,Abdelhak S, Kalatzis V, Heilig R,et al.Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet, 1997, 6: 2247-2255.

    33,Williams CJ, Ganguly A, Considine E,et al.A-2——>G transition at the 3' acceptor splice site of IVS17 characterizes the COL2A1 gene mutation in the original Stickler syndrome kindred. Am J Med Genet, 1996, 63: 461-467.

    34,Vikkula M, Mariman EC, Lui VC,et al. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell, 1995, 80:431-437.
, 百拇医药
    35,Richards AJ, Yates JR, Williams R,et al.A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet, 1996, 5:1339-1343.

    36,Neyroud N, Tesson F, Denjoy I,et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome.Nat Genet, 1997, 15: 186-189.

    37,Weil D, Blanchard S, Kaplan J,et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature, 1995, 374:60-61.
, 百拇医药
    38,Eudy JD, Weston MD, Yao S,et al.Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science, 1998, 280: 1753-1757.

    39,Everett LA, Glaser B, Beck JC,et al.Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet, 1997, 17: 411-422.

    40,Berger W, Meindl A, van de Pol TJ, et al. Isolation of a candidate gene for Norrie disease by positional cloning.Nat Genet 1992, 1: 199-203.
, 百拇医药
    41,Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science, 1990, 248: 1224-1227.

    42,Heddi A, Lestienne P, Wallace DC, et al. Steady state levels of mitochondrial and nuclear oxidative phosphorylation transcripts in Kearns-Sayre syndrome . Biochim Biophys Acta,1994,1226:206-212.

    43,Enriquez JA, Chomyn A, Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Geneti,1995,10:47-55.
, http://www.100md.com
    44,Sato W, Hayasaka K, Shoji Y, et al. A mitochondrial tRNA(Leu)(UUR) mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int,1994, 33:1055-1061.

    45,Manouvrier S, Rotig A, Hannebique G, et al. Point mutation of the mitochondrial tRNA(Leu) gene (A 3243 G) in maternally inherited hypertrophic cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. J Med Genet, 1995, 32: 654-656.

    (收稿日期:1999-07-11), 百拇医药