当前位置: 首页 > 期刊 > 《百科知识》 > 2016年第23期 > 正文
编号:12938967
交叉学科与诺贝尔奖(1)
http://www.100md.com 2016年12月1日 《百科知识》2016年第23期
交叉学科与诺贝尔奖
交叉学科与诺贝尔奖

     1993年的诺贝尔生理学或医学奖得主之一、英国科学家理查德·约翰·罗伯茨在2015年4月2日的《美国公共科学图书馆·计算生物学》发表文章称,获得诺贝尔奖有10个简单原则。其中一个原则是,学生物。因为,与生物学相关的诺贝尔奖有两种,即诺贝尔化学奖和诺贝尔生理学或医学奖,诺贝尔化学奖的一半都发给了生物学家,这样,就会提高50%的获奖概率。

    2016年化学奖的回归

    纵观诺贝尔化学奖的历史,罗伯茨的话有其合理性。在诺贝尔化学奖116年的历史长河中,共有174位获奖者,其中研究成果涉及生物、生命与化学(统称生物化学)的几近一半。在20世纪,英国科学家弗雷德里克·桑格分别在1958年和1980年两次获奖,成果均为生物化学的内容。

    到了21世纪,除2016年的化学奖外,已颁发的15次化学奖中,与生物相关(生物化学)内容更是高达10次,占2/3,以致化学专业的研究人员感到了不安和愤愤不平,声称干脆把化学合并到生物学里算了,因为纯粹的传统四大化学——无机化学、有机化学、物理化学和分析化学研究内容获奖加起来还不如生物化学一个学科的内容获奖的多。

    不过,2016年的化学奖似乎照顾到了化学领域研究人员的不安情绪,化学奖回归到纯化学的内容。2016年诺贝尔化学奖授予法国的让-皮埃尔·索瓦日、英国的弗雷泽·斯托达特爵士和荷兰的伯纳德·费林加,以表彰他们在“分子机器的设计与合成”方面的成就。

    这三位科学家的成果实际上就是设计和合成了分子机器。按时间顺序,1983年,索瓦日成功地将两个环形分子连接起来,形成一根链,命名为索烃,这是两个相互扣合的环形分子,从而启动了分子机器研发的第一步。

    1991年,斯托达特研究出轮烷,并将这个环形分子套在一个线性分子上,该环形分子能够以线性分子为轴移动,从而完成分子机器研发的第二步。此后,他以轮烷为研究基础,研发出分子起重机、分子肌肉和分子计算芯片。

    1999年,费林加研究出分子旋转叶片,能同向持续旋转,成为研制出分子马达的第一人。利用分子马达,费林加让一个28微米长的玻璃杯(比马达大1万倍)成功旋转。此外,他还设计出一辆纳米汽车。至此,分子机器研发初步成功。

    尽管在化学专业的研究人员看来,分子机器这一科学成果获得诺贝尔化学奖是化学姓“化”——回归纯化学的标志,但是,仔细看来,这个萌态十足的分子机器并非完全姓“化”,而是也可以姓“物”,或姓“化”与“物”的双姓,因为它并非是纯化学的血统,而是化学与物理学杂交的“后代”。

    追根溯源,生物化学也是从传统的纯化学演化而来,因为早期的生物化学主要作为有机化学的衍生学科,诺贝尔化学奖奖励的内容基本都是生物大分子或生物小分子的鉴定及功能研究,如生物碱、维生素等。

    2016年的诺贝尔化学奖其实也涉及了多学科的内容,并非纯化学血统,尤其是涉及物体的运动,因为无论是分子肌肉还是分子电梯,或分子马达,都需要它们能够运动做功,以达到帮人干活的目的。分子的运动也像物体的运动一样,既涉及运动物理,也涉及生物物理和材料物理。

    同时,分子机器的发明也起源于物理学的设想。1965年的诺贝尔物理学奖获得者理查德·菲利普斯·费曼早在1959年就在美国物理学会年会上提出,可以制造原子机器和分子汽车,后来他也对一个微型分子齿轮装置进行了讨论。这些概念成为后来研究人员研发分子机器的灵感源泉。

    即便以纯化学而言,分子机器也涉及并形成一个很大的领域,包括有机合成(化学)、(有机)超分子化学、分析化学等学科。因此,分子机器还算不上纯化学血统,而是有多学科杂交血缘关系。

    医学与物理学和化学的结合

    生物医学与化学结合的研究成果可以获得诺贝尔奖,生物医学与物理学结合的研究成果同样也可以获得诺贝尔奖,而且物理学与化学结合的研究成果也可能获得诺贝尔奖。因此,交叉学科成果获得诺贝尔奖的概率最高。

    1979年诺贝尔生理学或医学奖授予计算机X射线断层照相术(CT)的首创者科尔麦克和洪斯费尔德二人。这显然是物理学的成果应用于医学的结果。

    不过,另一项物理学成果应用于医学而获得诺贝尔生理学或医学奖更能体现物理与医学的结合,这就是2003年的诺贝尔生理学或医学奖,该奖项授予美国的保罗·C.劳特伯和英国的皮特·曼斯菲尔德,因为他们发明了磁共振成像技术(MRI),而这已经是很早以前的发明了。这项技术的发明使得人类再也不必在黑暗中摸索,能够看清自己和生物体内的器官,从而有利于诊断和治疗疾病。

    磁共振成像技术既是物理学与医学的结合,也是交叉学科能产生丰富成果的有力证明。能精确观察人体内部器官而又不造成伤害的影像对于医疗诊断、治疗和治疗后的随访至关重要。磁共振成像技术是一种创新,这一发现能让医生看清体内不同组织结构,而且这样的发现发展了当代磁共振成像技术,因此MRI代表着医疗诊断和研究的革命性突破。

    在磁共振成像发明之前,对于磁场的研究早就获得了诺贝尔物理学奖。磁场和无线电波频率之间的简单关系控制着共振现象,对于带有不配对的质子和(或)中子的每种原子核,存在一种数学上的常数。这就有可能确定磁场的波长,以作为磁场强度的函数。早在1946年,美国的费利克斯·布洛克和爱德华·米尔斯·珀塞尔对质子(所有原子的最小物质)研究时就证明了上述现象。为此他们共同获得1952年的诺贝尔物理学奖。

    磁共振成像技术的原理在于,一个强磁场中的原子核会以一定的频率转动,而这个频率则取决于该磁场的强度。如果该磁场吸收了相同频率的无线电波,它们的能量就会大大增强。当原子核返回到以前的能量水平时,无线电波就会发射出来。 (郭兴)
1 2下一页