基于PCA和PSO-SVM算法的鸡精调味料风味质量模型研究
程龙 靳涛 刘凤莲

摘 要:目的:提出一种基于主成分分析和粒子群优化——支持向量机算法的鸡精调味料风味质量模型。方法:以6种鸡精调味料风味感官数据为研究对象,对鸡精调味料的风味成分进行主成分分析,降低数据维数;利用粒子群优化算法获取支持向量机的最佳参数,并用支持向量机完成对鸡精调味料风味数据的训练和分类。结果:本文提出的模型与其他传统模型相比,具有较高的准确度,且实用价值高。
关键词:鸡精调味料;PCA;PSO-SVM算法;支持向量机;质量控制模型
随着人们生活水平的不断提高,人们对美食的要求也越来越高。鸡精调味料作为一种重要的食品调味料,其风味质量很大程度上决定了食品的口感[1]。传统方法一般采用仪器分析和人工评吸的方式进行风味质量控制 ......
您现在查看是摘要页,全文长 4773 字符。